Proof of Theorem 213

The theorem to be proved is
$\operatorname{Parity}(x \cdot 2)=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity}(x \cdot 2))=(0)]]$

Special cases of the hypothesis and previous results:

0: $\neg \operatorname{Parity}(x \cdot 2)=0 \quad$ from $\quad \mathrm{H}: x$
1: Parity $((x \cdot 2)+0)=$ Parity0 from $\underline{212 ; ~} x ; 0$
2: \quad Parity $0=0 \quad$ from $\quad \underline{208}$
$3: \quad(x \cdot 2)+0=x \cdot 2 \quad$ from $\quad \underline{12} ; x \cdot 2$

Equality substitutions:

4: $\neg \operatorname{Parity} 0=0 \quad \vee \neg \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=0$
5: $\quad \neg(x \cdot 2)+0=x \cdot 2 \quad \vee \quad \neg \operatorname{Parity}((x \cdot 2)+0)=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0$

Inferences:

6: $\quad \neg \operatorname{Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad$ by
0: $\neg \operatorname{Parity}(x \cdot 2)=0$
4: $\neg \operatorname{Parity} 0=0 \quad \vee \neg \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=0$
7: $\quad \neg(x \cdot 2)+0=x \cdot 2 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad$ by
1: Parity $((x \cdot 2)+0)=\operatorname{Parity} 0$
5: $\neg(x \cdot 2)+0=x \cdot 2 \quad \vee \quad \neg \operatorname{Parity}((x \cdot 2)+0)=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0$
8: $\neg \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad$ by
2: Parity0 $=0$
6: $\neg \operatorname{Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0$
9: $\quad \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0 \quad$ by
$3:(x \cdot 2)+0=x \cdot 2$
7: $\neg(x \cdot 2)+0=x \cdot 2 \quad \vee \quad \operatorname{Parity}(x \cdot 2)=\operatorname{Parity} 0$
10: $Q E A$ by
8: $\neg \operatorname{Parity}(x \cdot 2)=$ Parity0
9: Parity $(x \cdot 2)=\operatorname{Parity} 0$

