Proof of Theorem 211i

The theorem to be proved is
$[$ Parity $x=0 \quad \rightarrow \quad \operatorname{Parity}(x \cdot y)=0] \quad \rightarrow \quad[\operatorname{Parity} x=0 \quad \rightarrow \quad \operatorname{Parity}(x \cdot \mathrm{~S} y)=0]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity} x)=(0) \quad \vee \quad(\operatorname{Parity}(x \cdot y))=(0)] \quad \& \quad[(\operatorname{Parity} x)=(0)] \quad \&$ $[\neg(\operatorname{Parity}(x \cdot(\mathrm{~S} y)))=(0)]]$

Special cases of the hypothesis and previous results:

0: $\neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity}(x \cdot y)=0 \quad$ from $\quad \mathrm{H}: x: y$
1: Parity $x=0 \quad$ from $\quad \mathrm{H}: x: y$
2: $\neg \operatorname{Parity}(x \cdot(\mathrm{~S} y))=0 \quad$ from $\quad \mathrm{H}: x: y$
3: $\quad x+(x \cdot y)=x \cdot(\mathrm{~S} y) \quad$ from $\quad \underline{99} ; x ; y$
4: $\neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \quad$ from $\quad \underline{210} ; x ; x \cdot y$

Equality substitutions:

5: $\quad \neg \operatorname{Parity}(x \cdot y)=0 \vee \neg \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \quad \vee \quad \operatorname{Parity}(x+(x \cdot y))=0$
6: $\quad \neg x+(x \cdot y)=x \cdot(\mathrm{~S} y) \quad \vee \quad \neg \operatorname{Parity}(x+(x \cdot y))=0 \quad \vee \quad \operatorname{Parity}(x \cdot(\mathrm{~S} y))=0$

Inferences:

7: $\quad \operatorname{Parity}(x \cdot y)=0 \quad$ by
1: Parity $x=0$
$0: \neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity}(x \cdot y)=0$
8: $\quad \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \quad$ by
1: Parity $x=0$
4: $\neg \operatorname{Parity} x=0 \vee \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y)$
9: $\quad \neg x+(x \cdot y)=x \cdot(\mathrm{~S} y) \quad \vee \quad \neg \operatorname{Parity}(x+(x \cdot y))=0 \quad$ by
2: $\neg \operatorname{Parity}(x \cdot(\mathrm{~S} y))=0$
6: $\neg x+(x \cdot y)=x \cdot(\mathrm{~S} y) \quad \vee \quad \neg \operatorname{Parity}(x+(x \cdot y))=0 \quad \vee \quad \operatorname{Parity}(x \cdot(\mathrm{~S} y))=0$
10: $\neg \operatorname{Parity}(x+(x \cdot y))=0 \quad$ by
$3: x+(x \cdot y)=x \cdot(\mathrm{~S} y)$
9: $\neg x+(x \cdot y)=x \cdot(\mathrm{~S} y) \quad \vee \quad \neg \operatorname{Parity}(x+(x \cdot y))=0$

11: $\neg \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \quad \vee \quad \operatorname{Parity}(x+(x \cdot y))=0 \quad$ by
7: $\operatorname{Parity}(x \cdot y)=0$
5: $\neg \operatorname{Parity}(x \cdot y)=0 \vee \neg \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \vee \operatorname{Parity}(x+(x \cdot y))=0$
12: $\operatorname{Parity}(x+(x \cdot y))=0 \quad$ by
8: $\operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y)$
11: $\neg \operatorname{Parity}(x+(x \cdot y))=\operatorname{Parity}(x \cdot y) \quad \vee \quad \operatorname{Parity}(x+(x \cdot y))=0$
13: $Q E A$ by
10: $\neg \operatorname{Parity}(x+(x \cdot y))=0$
12: $\operatorname{Parity}(x+(x \cdot y))=0$

