Proof of Theorem 211i

The theorem to be proved is

$$[\operatorname{Parity} x = 0 \quad \to \quad \operatorname{Parity}(x \cdot y) = 0] \quad \to \quad [\operatorname{Parity} x = 0 \quad \to \quad \operatorname{Parity}(x \cdot \mathbf{S}y) = 0]$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Parityx) = (0) \lor (Parity(x \cdot y)) = (0)]$$
 & $[(Parityx) = (0)]$ & $[\neg (Parity(x \cdot (Sy))) = (0)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \text{Parity} x = 0 \lor \text{Parity}(x \cdot y) = 0$$
 from H:x:y

1: Parity
$$x = 0$$
 from H: $x:y$

2:
$$\neg \operatorname{Parity}(x \cdot (Sy)) = 0$$
 from H:x:y

3:
$$x + (x \cdot y) = x \cdot (Sy)$$
 from 99; $x;y$

4:
$$\neg \text{Parity}(x = 0 \ \lor \ \text{Parity}(x + (x \cdot y)) = \text{Parity}(x \cdot y)$$
 from $210; x; x \cdot y$

Equality substitutions:

5:
$$\neg \operatorname{Parity}(x \cdot y) = 0 \quad \lor \quad \neg \operatorname{Parity}(x + (x \cdot y)) = \operatorname{Parity}(x \cdot y) \quad \lor \quad \operatorname{Parity}(x + (x \cdot y)) = 0$$

6:
$$\neg x + (x \cdot y) = x \cdot (Sy) \lor \neg Parity(x + (x \cdot y)) = 0 \lor Parity(x \cdot (Sy)) = 0$$

Inferences:

7: Parity
$$(x \cdot y) = 0$$
 by

1: Parity
$$x = 0$$

0:
$$\neg \text{Parity} x = 0 \lor \text{Parity}(x \cdot y) = 0$$

8:
$$Parity(x + (x \cdot y)) = Parity(x \cdot y)$$
 by

1: Parity
$$x = 0$$

4:
$$\neg \text{Parity} x = 0 \lor \text{Parity}(x + (x \cdot y)) = \text{Parity}(x \cdot y)$$

9:
$$\neg x + (x \cdot y) = x \cdot (Sy) \lor \neg Parity(x + (x \cdot y)) = 0$$
 by

2:
$$\neg \operatorname{Parity}(x \cdot (Sy)) = 0$$

6:
$$\neg x + (x \cdot y) = x \cdot (Sy) \lor \neg Parity(x + (x \cdot y)) = 0 \lor Parity(x \cdot (Sy)) = 0$$

10:
$$\neg \operatorname{Parity}(x + (x \cdot y)) = 0$$
 by

3:
$$x + (x \cdot y) = x \cdot (Sy)$$

9:
$$\neg x + (x \cdot y) = x \cdot (Sy) \lor \neg Parity(x + (x \cdot y)) = 0$$

11:
$$\neg \operatorname{Parity}(x + (x \cdot y)) = \operatorname{Parity}(x \cdot y) \lor \operatorname{Parity}(x + (x \cdot y)) = 0$$
 by 7: $\operatorname{Parity}(x \cdot y) = 0$ 5: $\neg \operatorname{Parity}(x \cdot y) = 0 \lor \neg \operatorname{Parity}(x + (x \cdot y)) = \operatorname{Parity}(x \cdot y) \lor \operatorname{Parity}(x + (x \cdot y)) = 0$

12:
$$\operatorname{Parity}(x + (x \cdot y)) = 0$$
 by
8: $\operatorname{Parity}(x + (x \cdot y)) = \operatorname{Parity}(x \cdot y)$
11: $\neg \operatorname{Parity}(x + (x \cdot y)) = \operatorname{Parity}(x \cdot y) \lor \operatorname{Parity}(x + (x \cdot y)) = 0$

13:
$$QEA$$
 by
10: $\neg \text{Parity}(x + (x \cdot y)) = 0$
12: $\text{Parity}(x + (x \cdot y)) = 0$