Proof of Theorem 211b

The theorem to be proved is

Parity
$$x = 0 \rightarrow \operatorname{Parity}(x \cdot 0) = 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Parityx) = (0)] \& [\neg (Parity(x \cdot 0)) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg \operatorname{Parity}(x \cdot 0) = 0$$
 from H:x

1:
$$x \cdot 0 = 0$$
 from $100; x$

2: Parity
$$0 = 0$$
 from 205

Equality substitutions:

3:
$$\neg x \cdot 0 = 0 \lor \operatorname{Parity}(x \cdot 0) = 0 \lor \neg \operatorname{Parity}(0) = 0$$

Inferences:

4:
$$\neg x \cdot 0 = 0 \lor \neg Parity 0 = 0$$
 by

0:
$$\neg \operatorname{Parity}(x \cdot 0) = 0$$

3:
$$\neg x \cdot 0 = 0 \quad \lor \quad \text{Parity}(x \cdot 0) = 0 \quad \lor \quad \neg \text{Parity}(0) = 0$$

5:
$$\neg \text{Parity} 0 = 0$$
 by

1:
$$x \cdot 0 = 0$$

4:
$$\neg x \cdot 0 = 0 \quad \lor \quad \neg \text{ Parity } 0 = 0$$

$$6: QEA$$
 by

2: Parity
$$0 = 0$$

5:
$$\neg Parity0 = 0$$