Proof of Theorem 211b

The theorem to be proved is
Parity $x=0 \rightarrow \operatorname{Parity}(x \cdot 0)=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\operatorname{Parity} x)=(0)] \quad \& \quad[\neg(\operatorname{Parity}(x \cdot 0))=(0)]]$

Special cases of the hypothesis and previous results:

0: $\neg \operatorname{Parity}(x \cdot 0)=0 \quad$ from $\quad \mathrm{H}: x$
1: $x \cdot 0=0 \quad$ from $100 ; x$
2: \quad Parity $0=0 \quad$ from $\quad \underline{205}$

Equality substitutions:

3: $\quad \neg x \cdot 0=0 \quad \vee \quad \operatorname{Parity}(x \cdot 0)=0 \quad \vee \quad \neg \operatorname{Parity}(0)=0$

Inferences:

4: $\quad \neg x \cdot 0=0 \quad \vee \quad \neg \operatorname{Parity} 0=0 \quad$ by
0: $\neg \operatorname{Parity}(x \cdot 0)=0$
3: $\neg x \cdot 0=0 \quad \vee \quad \operatorname{Parity}(x \cdot 0)=0 \quad \vee \quad \neg \operatorname{Parity} 0=0$
5: $\quad \neg$ Parity $0=0 \quad$ by
1: $x \cdot 0=0$
4: $\neg x \cdot 0=0 \quad \vee \quad \neg$ Parity $0=0$
6: $Q E A$ by
2: Parity0 $=0$
5: \neg Parity $0=0$

