Proof of Theorem 210i

The theorem to be proved is
$[\operatorname{Parity} x=0 \quad \rightarrow \quad \operatorname{Parity}(x+y)=\operatorname{Parity} y] \quad \rightarrow \quad[\operatorname{Parity} x=0 \quad \rightarrow \quad \operatorname{Parity}(x+\mathrm{S} y)=$ Parity Sy]

Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity} x)=(0) \quad \vee \quad(\operatorname{Parity}(x+y))=(\operatorname{Parity} y)] \quad \& \quad[(\operatorname{Parity} x)=(0)]$ $\& \quad[\neg(\operatorname{Parity}(x+(\mathrm{S} y)))=(\operatorname{Parity}(\mathrm{S} y))]]$

Special cases of the hypothesis and previous results:

0: $\neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity}(x+y)=\operatorname{Parity} y \quad$ from $\quad \mathrm{H}: x: y$
1: Parity $x=0 \quad$ from $\quad \mathrm{H}: x: y$
2: $\neg \operatorname{Parity}(x+(\mathrm{S} y))=\operatorname{Parity}(\mathrm{S} y) \quad$ from $\quad \mathrm{H}: x: y$
3: $\quad \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad$ from $\quad \underline{12} ; x ; y$
4: $\mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y)) \quad$ from $\quad \underline{205} ; x+y$
5: $\quad \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y) \quad$ from $\quad \underline{205} ; y$

Equality substitutions:

$$
\begin{aligned}
& \text { 6: } \neg \operatorname{Parity}(x+y)=\operatorname{Parity} y \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \\
& \vee \quad \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \\
& 7: \quad \neg \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y)) \\
& \vee \quad \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \\
& 8: \quad \neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y) \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \\
& \vee \quad \operatorname{Parity}(\mathrm{S} y)=\operatorname{Parity}(x+(\mathrm{S} y))
\end{aligned}
$$

Inferences:

9: Parity $(x+y)=\operatorname{Parity} y \quad$ by
1: Parity $x=0$
$0: \neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity}(x+y)=\operatorname{Parity} y$
10: $\neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y) \vee \neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \quad$ by 2: $\neg \operatorname{Parity}(x+(\mathrm{S} y))=\operatorname{Parity}(\mathrm{S} y)$

8: $\neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y) \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
$\checkmark \quad \operatorname{Parity}(x+(\mathrm{S} y))=\operatorname{Parity}(\mathrm{S} y)$
11: $\neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y)) \quad \vee \quad \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=$ $\operatorname{Parity}(x+(\mathrm{S} y)) \quad$ by

3: $\mathrm{S}(x+y)=x+(\mathrm{S} y)$
7: $\neg \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y))$
$\vee \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
12: $\quad \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \quad$ by
4: $\mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y))$
11: $\neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(\mathrm{S}(x+y)) \quad \vee \quad \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=$ $\operatorname{Parity}(x+(\mathrm{S} y))$

13: $\neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \quad$ by
5: $\mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y)$
10: $\neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(\mathrm{S} y) \quad \vee \neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
14: $\neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \vee \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$ by

9: Parity $(x+y)=\operatorname{Parity} y$
6: $\neg \operatorname{Parity}(x+y)=\operatorname{Parity} y \quad \vee \quad \neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
$\vee \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
15: $\quad \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \quad$ by
12: $\mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
14: $\neg \mathrm{C}((\operatorname{Parity}(x+y), 1,0))=\operatorname{Parity}(x+(\mathrm{S} y)) \vee \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+$ (Sy))

16: $Q E A$ by
13: $\neg \mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$
15: $\mathrm{C}((\operatorname{Parity} y, 1,0))=\operatorname{Parity}(x+(\mathrm{S} y))$

