## Proof of Theorem 210b

The theorem to be proved is
Parity $x=0 \quad \rightarrow \quad \operatorname{Parity}(x+0)=\operatorname{Parity} 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\operatorname{Parity} x)=(0)] \quad \& \quad[\neg(\operatorname{Parity}(x+0))=(\operatorname{Parity} 0)]]$

## Special cases of the hypothesis and previous results:

0: Parity $x=0 \quad$ from $\mathrm{H}: x$
1: $\neg \operatorname{Parity}(x+0)=\operatorname{Parity} 0 \quad$ from $\mathrm{H}: x$
2: $\quad$ Parity $0=0 \quad$ from $\underline{208}$
3: $x+0=x \quad$ from $\quad \underline{12 ;} x$

## Equality substitutions:

4: $\neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity} 0=\operatorname{Parity} x \quad \vee \quad \neg \operatorname{Parity} 0=0$
5: $\neg x+0=x \quad \vee \quad \operatorname{Parity}(x+0)=\operatorname{Parity} 0 \quad \vee \quad \neg \operatorname{Parity}(x)=\operatorname{Parity} 0$

## Inferences:

6: $\quad$ Parity $0=\operatorname{Parity} x \quad \vee \quad \neg \operatorname{Parity} 0=0 \quad$ by
0: Parity $x=0$
4: $\neg \operatorname{Parity} x=0 \quad \vee \quad \operatorname{Parity} 0=\operatorname{Parity} x \quad \vee \quad \neg \operatorname{Parity} 0=0$
7: $\quad \neg x+0=x \quad \vee \quad \neg \operatorname{Parity} 0=\operatorname{Parity} x \quad$ by
1: $\neg \operatorname{Parity}(x+0)=$ Parity 0
5: $\neg x+0=x \quad \vee \quad \operatorname{Parity}(x+0)=\operatorname{Parity} 0 \quad \vee \quad \neg \operatorname{Parity} 0=\operatorname{Parity} x$
8: $\quad$ Parity $0=\operatorname{Parity} x \quad$ by
2: $\operatorname{Parity} 0=0$
6: Parity0 $=$ Parity $x \quad \vee \quad \neg$ Parity $0=0$
9: $\neg$ Parity $0=\operatorname{Parity} x \quad$ by
3: $x+0=x$
7: $\neg x+0=x \quad \vee \quad \neg \operatorname{Parity} 0=\operatorname{Parity} x$
10: $Q E A$ by
8: Parity0 $=$ Parity $x$
9: $\neg$ Parity $0=$ Parity $x$

