Proof of Theorem 210b

The theorem to be proved is

Parity $x = 0 \rightarrow \operatorname{Parity}(x+0) = \operatorname{Parity} 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(Parityx) = (0)] \& [\neg (Parity(x+0)) = (Parity0)]]$

Special cases of the hypothesis and previous results:

- 0: Parityx = 0 from H:x
- 1: \neg Parity(x + 0) = Parity0 from H:x
- 2: Parity0 = 0 from <u>208</u>
- 3: x + 0 = x from <u>12</u>;x

Equality substitutions:

- 4: \neg Parity $x = 0 \lor$ Parity $0 = \frac{\text{Parity}x}{\nabla} \lor \neg$ Parity0 = 0
- 5: $\neg x + 0 = x \lor \operatorname{Parity}(x + 0) = \operatorname{Parity}(0 \lor \neg \operatorname{Parity}(x) = \operatorname{Parity}(0)$

Inferences:

6: Parity
$$0$$
 = Parity $x \lor \neg$ Parity $0 = 0$ by
0: Parity $x = 0$
4: \neg Parity $x = 0 \lor$ Parity 0 = Parity $x \lor \neg$ Parity $0 = 0$
7: $\neg x + 0 = x \lor \neg$ Parity 0 = Parity x by
1: \neg Parity $(x + 0) =$ Parity 0
5: $\neg x + 0 = x \lor$ Parity $(x + 0) =$ Parity $0 \lor \neg$ Parity $0 =$ Parity x
8: Parity 0 = Parity x by
2: Parity 0 = Parity x by
2: Parity 0 = Parity $x \lor \neg$ Parity $0 = 0$
9: \neg Parity 0 = Parity $x \lor y$ \neg Parity $0 = 0$
9: \neg Parity 0 = Parity x by
3: $x + 0 = x$
7: $\neg x + 0 = x \lor \neg$ Parity 0 = Parity x
10: QEA by

8: Parity0 = Parityx9: \neg Parity0 = Parityx