Proof of Theorem 21

The theorem to be proved is
$\mathrm{S} x-x \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[((\mathrm{S} x)-x)=(0)]]$

Special cases of the hypothesis and previous results:

0: $\quad(\mathrm{S} x)-x=0 \quad$ from $\quad \mathrm{H}: x$
1: $\quad(\mathrm{S} x)-x=\mathrm{S} 0 \quad$ from $\quad \underline{20} ; x$
2: $\neg \mathrm{S} 0=0 \quad$ from $\quad 3 ; 0$

Equality substitutions:

3: $\neg(\mathrm{S} x)-x=0 \quad \vee \neg(\mathrm{~S} x)-x=\mathrm{S} 0 \quad \vee \quad 0=\mathrm{S} 0$

Inferences:

4: $\neg(\mathrm{S} x)-x=\mathrm{S} 0 \quad \vee \quad \mathrm{~S} 0=0 \quad$ by
0: $(\mathrm{S} x)-x=0$
3: $\neg(\mathrm{S} x)-x=0 \quad \vee \quad \neg(\mathrm{~S} x)-x=\mathrm{S} 0 \quad \vee \quad \mathrm{~S} 0=0$
5: $\quad \mathrm{S} 0=0 \quad$ by
1: $(\mathrm{S} x)-x=\mathrm{S} 0$
4: $\neg(\mathrm{S} x)-x=\mathrm{S} 0 \quad \vee \mathrm{~S} 0=0$
6: $Q E A$ by
2: $\neg \mathrm{S} 0=0$
5: $\mathrm{S} 0=0$

