Proof of Theorem 21

The theorem to be proved is

$$Sx - x \neq 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[((Sx) - x) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$(Sx) - x = 0$$
 from H:x

1:
$$(Sx) - x = S0$$
 from $20; x$

2:
$$\neg S0 = 0$$
 from 3;0

Equality substitutions:

3:
$$\neg (Sx) - x = 0 \lor \neg (Sx) - x = S0 \lor 0 = S0$$

Inferences:

4:
$$\neg (Sx) - x = S0 \lor S0 = 0$$
 by

0:
$$(Sx) - x = 0$$

3:
$$\neg (Sx) - x = 0 \lor \neg (Sx) - x = S0 \lor S0 = 0$$

5:
$$S0 = 0$$
 by

1:
$$(Sx) - x = S0$$

4:
$$\neg (Sx) - x = S0 \lor S0 = 0$$

$$6: QEA$$
 by

2:
$$\neg S0 = 0$$

5:
$$S0 = 0$$