Proof of Theorem 20i

The theorem to be proved is
$\mathrm{S} x-x=\mathrm{S} 0 \quad \rightarrow \quad \mathrm{SS} x-\mathrm{S} x=\mathrm{S} 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[((\mathrm{S} x)-x)=(\mathrm{S} 0)] \quad \& \quad[\neg((\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x))=(\mathrm{S} 0)]]$

Special cases of the hypothesis and previous results:

0: $\quad(\mathrm{S} x)-x=\mathrm{S} 0 \quad$ from $\mathrm{H}: x$
1: $\neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=\mathrm{S} 0 \quad$ from $\mathrm{H}: x$
2: $\quad(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad$ from $\quad 18 ; \mathrm{S} x ; x$

Equality substitutions:

3: $\quad \neg(\mathrm{S} x)-x=\mathrm{S} 0 \quad \vee \quad \neg(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad \vee \quad(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=\mathrm{S} 0$

Inferences:

4: $\neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad \vee \quad(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=\mathrm{S} 0 \quad$ by
0: $(\mathrm{S} x)-x=\mathrm{S} 0$
3: $\neg(\mathrm{S} x)-x=\mathrm{S} 0 \quad \vee \neg(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad \vee \quad(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=\mathrm{S} 0$
5: $\quad \neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad$ by
1: $\neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=\mathrm{S} 0$
4: $\neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x \quad \vee \quad(\mathrm{~S}(\mathrm{~S} x))-(\mathrm{S} x)=\mathrm{S} 0$
6: $Q E A$ by
2: $(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x$
5: $\neg(\mathrm{S}(\mathrm{S} x))-(\mathrm{S} x)=(\mathrm{S} x)-x$

