Proof of Theorem 204

The theorem to be proved is
$x \oplus y=\epsilon \quad \rightarrow \quad x=\epsilon \quad \& \quad y=\epsilon$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x \oplus y)=(\epsilon)] \quad \& \quad[\neg(x)=(\epsilon) \quad \vee \quad \neg(y)=(\epsilon)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llllll}
0: & x \oplus y=\epsilon \quad \text { from } \quad \mathrm{H}: x: y \\
1: & \neg \epsilon=x \quad \vee \quad \neg \epsilon=y \quad \text { from } \quad \mathrm{H}: x: y \\
2: & (\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \text { from } & \underline{180} ; x ; y \\
3: & \mathrm{Q} \epsilon=1 \quad \text { from } \quad \underline{189} & & \\
4: & \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 & \vee & \mathrm{Q} x=1 & \text { from } & \underline{202} ; \mathrm{Q} x ; \mathrm{Q} y \\
5: & \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 & \vee & \mathrm{Q} y=1 & \text { from } & \underline{202} ; \mathrm{Q} x ; \mathrm{Q} y \\
6: & \neg \mathrm{Q} x=1 & \vee & \epsilon=x & \text { from } & \underline{203} ; x \\
7: & \neg \mathrm{Q} y=1 & \vee & \epsilon=y \quad \text { from } & \underline{203} ; y
\end{array}
$$

Equality substitutions:

$$
\begin{aligned}
& 8: \quad \neg x \oplus y=\epsilon \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(\epsilon) \\
& 9: \quad \neg \mathrm{Q} \epsilon=1 \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1
\end{aligned}
$$

Inferences:

10: $\quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad$ by $0: x \oplus y=\epsilon$
8: $\neg x \oplus y=\epsilon \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon$
11: $\quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad$ by
$2:(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$
10: $\neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon$
12: $\quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 \quad$ by
3: $\mathrm{Q} \epsilon=1$
9: $\neg \mathrm{Q} \epsilon=1 \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1$

13: $\quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 \quad$ by
11: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon$
12: $\neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q} \epsilon \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1$
14: $\quad \mathrm{Q} x=1 \quad$ by
13: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1$
4: $\neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 \quad \vee \quad \mathrm{Q} x=1$
15: $\quad \mathrm{Q} y=1 \quad$ by
13: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1$
$5: \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=1 \quad \vee \quad \mathrm{Q} y=1$
16: $\epsilon=x \quad$ by
14: $\mathrm{Q} x=1$
6: $\neg \mathrm{Q} x=1 \vee \epsilon=x$
17: $\epsilon=y \quad$ by
15: $\mathrm{Q} y=1$
7: $\neg \mathrm{Q} y=1 \quad \vee \quad \epsilon=y$
18: $\neg \epsilon=y \quad$ by
16: $\epsilon=x$
1: $\neg \epsilon=x \quad \vee \quad \neg \epsilon=y$
19: $Q E A$ by
17: $\epsilon=y$
18: $\neg \epsilon=y$

