Proof of Theorem 204

 \star

The theorem to be proved is

 $x\oplus y=\epsilon \quad \rightarrow \quad x=\epsilon \quad \& \quad y=\epsilon$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x \oplus y) = (\epsilon)]$ & $[\neg (x) = (\epsilon) \lor \neg (y) = (\epsilon)]]$

Special cases of the hypothesis and previous results:

0:
$$x \oplus y = \epsilon$$
 from H:x:y
1: $\neg \epsilon = x \lor \neg \epsilon = y$ from H:x:y
2: $(Qx) \cdot (Qy) = Q(x \oplus y)$ from 180;x;y
3: $Q\epsilon = 1$ from 189
4: $\neg (Qx) \cdot (Qy) = 1 \lor Qx = 1$ from 202;Qx;Qy
5: $\neg (Qx) \cdot (Qy) = 1 \lor Qy = 1$ from 202;Qx;Qy
6: $\neg Qx = 1 \lor \epsilon = x$ from 203;x
7: $\neg Qy = 1 \lor \epsilon = y$ from 203;y

Equality substitutions:

8:
$$\neg x \oplus y = \epsilon \lor \neg (Qx) \cdot (Qy) = Q(x \oplus y) \lor (Qx) \cdot (Qy) = Q(\epsilon)$$

9: $\neg Q\epsilon = 1 \lor \neg (Qx) \cdot (Qy) = Q\epsilon \lor (Qx) \cdot (Qy) = 1$

Inferences:

10:
$$\neg (Qx) \cdot (Qy) = Q(x \oplus y) \lor (Qx) \cdot (Qy) = Q\epsilon$$
 by
0: $x \oplus y = \epsilon$
8: $\neg x \oplus y = \epsilon \lor \neg (Qx) \cdot (Qy) = Q(x \oplus y) \lor (Qx) \cdot (Qy) = Q\epsilon$

11:
$$(Qx) \cdot (Qy) = Q\epsilon$$
 by
2: $(Qx) \cdot (Qy) = Q(x \oplus y)$
10: $\neg (Qx) \cdot (Qy) = Q(x \oplus y) \lor (Qx) \cdot (Qy) = Q\epsilon$

12:
$$\neg (Qx) \cdot (Qy) = Q\epsilon \quad \lor \quad (Qx) \cdot (Qy) = 1$$
 by
3: $Q\epsilon = 1$
9: $\neg Q\epsilon = 1 \quad \lor \quad \neg (Qx) \cdot (Qy) = Q\epsilon \quad \lor \quad (Qx) \cdot (Qy) = 1$

13: $(\mathbf{Q}x) \cdot (\mathbf{Q}y) = 1$ by 11: $(\mathbf{Q}x) \cdot (\mathbf{Q}y) = \mathbf{Q}\epsilon$ 12: $\neg (\mathbf{Q}x) \cdot (\mathbf{Q}y) = \mathbf{Q}\epsilon \quad \lor \quad (\mathbf{Q}x) \cdot (\mathbf{Q}y) = 1$ 14: Qx = 1 by 13: $(Qx) \cdot (Qy) = 1$ 4: $\neg (\mathbf{Q}x) \cdot (\mathbf{Q}y) = 1 \quad \lor \quad \mathbf{Q}x = 1$ 15: Qy = 1 by 13: $(Qx) \cdot (Qy) = 1$ 5: \neg (Qx) · (Qy) = 1 \lor Qy = 1 16: $\epsilon = x$ by 14: Qx = 16: $\neg \mathbf{Q}x = 1 \quad \lor \quad \epsilon = x$ 17: $\epsilon = y$ by 15: Qy = 17: $\neg \mathbf{Q}y = 1 \quad \lor \quad \epsilon = y$ 18: $\neg \epsilon = y$ by 16: $\epsilon = x$ 1: $\neg \epsilon = x \lor \neg \epsilon = y$ 19: QEA by 17: $\epsilon = y$

18: $\neg \epsilon = y$