Proof of Theorem 203

The theorem to be proved is

$$Qx = 1 \rightarrow x = \epsilon$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Qx) = (1)] \& [\neg (x) = (\epsilon)]]$$

Special cases of the hypothesis and previous results:

- 0: Qx = 1 from H:x
- 1: $\neg \epsilon = x$ from H:x
- 2: S0 = 1 from 115
- 3: $\epsilon = 0$ from <u>185</u>
- 4: 1 + 0 = 1 from 12;1
- 5: (Qx) + (Rx) = Sx from <u>166</u>;x
- 6: Rx < Qx from 166;x
- 7: $\neg Rx \le 1 \quad \lor \quad Rx = 0 \quad \lor \quad Rx = 1 \quad \text{from} \quad \underline{200}; Rx$
- 8: $\neg Rx < 1 \lor Rx \le 1$ from $\underline{56} \Rightarrow ;Rx;1$
- 9: $\neg Rx < 1 \lor \neg Rx = 1$ from $\underline{56}^{\Rightarrow}; Rx; 1$
- 10: $\neg S0 = Sx \lor 0 = x$ from 4;x;0

Equality substitutions:

11:
$$\neg Qx = 1 \lor \neg (Qx) + (Rx) = Sx \lor (1) + (Rx) = Sx$$

12:
$$\neg Qx = 1 \lor \neg Rx < \frac{Qx}{} \lor Rx < \frac{1}{}$$

13:
$$\neg S0 = 1 \lor S0 = Sx \lor \neg 1 = Sx$$

14:
$$\neg \epsilon = 0 \quad \lor \quad \epsilon = x \quad \lor \quad \neg 0 = x$$

15:
$$\neg 1 + 0 = 1 \lor \neg 1 + 0 = Sx \lor 1 = Sx$$

16:
$$\neg Rx = 0 \lor \neg 1 + (Rx) = Sx \lor 1 + (0) = Sx$$

Inferences:

17:
$$\neg (Qx) + (Rx) = Sx \lor 1 + (Rx) = Sx$$
 by

0: $Qx = 1$

11:
$$\neg \mathbf{Q}x = \mathbf{1} \quad \lor \quad \neg (\mathbf{Q}x) + (\mathbf{R}x) = \mathbf{S}x \quad \lor \quad \mathbf{1} + (\mathbf{R}x) = \mathbf{S}x$$

18:
$$\neg Rx < Qx \lor Rx < 1$$
 by

0:
$$Qx = 1$$

12:
$$\neg Qx = 1 \lor \neg Rx < Qx \lor Rx < 1$$

19:
$$\neg \epsilon = 0 \quad \lor \quad \neg 0 = x$$
 by

1:
$$\neg \epsilon = x$$

14:
$$\neg \epsilon = 0 \quad \lor \quad \epsilon = x \quad \lor \quad \neg \ 0 = x$$

20:
$$S0 = Sx \lor \neg Sx = 1$$
 by

$$2: S0 = 1$$

13:
$$\neg S0 = 1 \quad \lor \quad S0 = Sx \quad \lor \quad \neg Sx = 1$$

21:
$$\neg 0 = x$$
 by

$$3: \epsilon = 0$$

19:
$$\neg \epsilon = 0 \quad \lor \quad \neg 0 = x$$

22:
$$\neg 1 + 0 = Sx \lor Sx = 1$$
 by

4:
$$1 + 0 = 1$$

15:
$$\neg 1 + 0 = 1 \quad \lor \quad \neg 1 + 0 = Sx \quad \lor \quad Sx = 1$$

23:
$$1 + (Rx) = Sx$$
 by

$$5: (Qx) + (Rx) = Sx$$

17:
$$\neg (Qx) + (Rx) = Sx \lor 1 + (Rx) = Sx$$

24:
$$Rx < 1$$
 by

6:
$$Rx < Qx$$

18:
$$\neg Rx < Qx \lor Rx < 1$$

25:
$$\neg S0 = Sx$$
 by

21:
$$\neg 0 = x$$

$$10: \neg S0 = Sx \lor 0 = x$$

26:
$$\neg Rx = 0 \lor 1 + 0 = Sx$$
 by

23:
$$1 + (Rx) = Sx$$

16:
$$\neg Rx = 0 \lor \neg 1 + (Rx) = Sx \lor 1 + 0 = Sx$$

27:
$$Rx \leq 1$$
 by

24:
$$Rx < 1$$

8:
$$\neg Rx < 1 \lor Rx \le 1$$

28:
$$\neg Rx = 1$$
 by

24:
$$Rx < 1$$

9:
$$\neg \mathbf{R}x < 1 \quad \lor \quad \neg \mathbf{R}x = 1$$

29:
$$\neg Sx = 1$$
 by

25:
$$\neg S0 = Sx$$

20:
$$S0 = Sx \lor \neg Sx = 1$$

30:
$$Rx = 0 \quad \forall \quad Rx = 1$$
 by

27:
$$Rx \le 1$$

7:
$$\neg \mathbf{R}x \le 1 \quad \lor \quad \mathbf{R}x = 0 \quad \lor \quad \mathbf{R}x = 1$$

31:
$$Rx = 0$$
 by

28:
$$\neg Rx = 1$$

30:
$$Rx = 0 \lor Rx = 1$$

32:
$$\neg 1 + 0 = Sx$$
 by

29:
$$\neg Sx = 1$$

22:
$$\neg 1 + 0 = Sx \lor Sx = 1$$

33:
$$1 + 0 = Sx$$
 by

31:
$$\mathbf{R}x = 0$$

26:
$$\neg \mathbf{R}x = \mathbf{0} \quad \lor \quad 1 + 0 = \mathbf{S}x$$

$$34: QEA$$
 by

$$32: \neg 1 + 0 = Sx$$

33:
$$1 + 0 = Sx$$