Proof of Theorem 200

The theorem to be proved is
$x \leq 1 \quad \rightarrow \quad x=0 \quad \vee \quad x=1$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(1)] \quad \& \quad[\neg(x)=(0)] \quad \& \quad[\neg(x)=(1)]]$

Special cases of the hypothesis and previous results:

0: $x \leq 1$ from $\mathrm{H}: x$
1: $\neg 0=x \quad$ from $\quad \mathrm{H}: x$
2: $\neg 1=x \quad$ from $\quad \mathrm{H}: x$
3: $\mathrm{S} 0=1 \quad$ from $\quad \underline{115}$
4: $\neg x \leq 1 \quad \vee \quad x+w=1 \quad$ from $\quad 167 ; x ; 1: w$
5: $\quad 0=w \quad \vee \quad \mathrm{~S}(\mathrm{P} w)=w \quad$ from $\quad \underline{22} ; w$
$6: \quad x+0=x \quad$ from $\quad \underline{12} ; x ; \mathrm{P} w$
7: $\quad \mathrm{S}(x+(\mathrm{P} w))=x+(\mathrm{S}(\mathrm{P} w)) \quad$ from $\quad 12 ; x ; \mathrm{P} w$
8: $\neg \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad x+(\mathrm{P} w)=0 \quad$ from $\quad \underline{4} ; x+(\mathrm{P} w) ; 0$
9: $\neg x+(\mathrm{P} w)=0 \quad \vee \quad 0=x \quad$ from $\quad \underline{15} ; x ; \mathrm{P} w$

Equality substitutions:

10: $\neg \mathrm{S} 0=1 \quad \vee \quad x+w=\mathrm{S} 0 \quad \vee \quad \neg x+w=1$
11: $\neg x+w=1 \quad \vee \quad \neg x+w=x \quad \vee \quad 1=x$
12: $\quad \neg 0=w \quad \vee \quad \neg x+0=x \quad \vee \quad x+w=x$

13: $\neg \mathrm{S}(\mathrm{P} w)=w \quad \vee \quad x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+(w)=\mathrm{S} 0$
14: $\neg \mathrm{S}(x+(\mathrm{P} w))=x+(\mathrm{S}(\mathrm{P} w)) \quad \vee \quad \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0$

Inferences:

15: $x+w=1 \quad$ by
0 : $x \leq 1$
4: $\neg x \leq 1 \quad \vee \quad x+w=1$

16: $\quad \neg x+(\mathrm{P} w)=0 \quad$ by
1: $\neg 0=x$
9: $\neg x+(\mathrm{P} w)=0 \quad \vee \quad 0=x$
17: $\neg x+w=1 \quad \vee \neg x+w=x \quad$ by
2: $\neg 1=x$
11: $\neg x+w=1 \quad \vee \quad \neg x+w=x \quad \vee \quad 1=x$
18: $\quad x+w=\mathrm{S} 0 \vee \neg x+w=1 \quad$ by
3: $\mathrm{S} 0=1$
10: $\neg \mathrm{S} 0=1 \quad \vee \quad x+w=\mathrm{S} 0 \quad \vee \quad \neg x+w=1$
19: $\neg 0=w \quad \vee \quad x+w=x \quad$ by
6: $x+0=x$
12: $\neg 0=w \quad \vee \quad \neg x+0=x \quad \vee \quad x+w=x$
20: $\quad \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0 \quad$ by
7: $\mathrm{S}(x+(\mathrm{P} w))=x+(\mathrm{S}(\mathrm{P} w))$
14: $\neg \mathrm{S}(x+(\mathrm{P} w))=x+(\mathrm{S}(\mathrm{P} w)) \quad \vee \quad \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0$
21: $\quad \neg x+w=x \quad$ by
15: $x+w=1$
17: $\neg x+w=1 \quad \vee \quad \neg x+w=x$
22: $\quad x+w=\mathrm{S} 0 \quad$ by
15: $x+w=1$
18: $x+w=\mathrm{S} 0 \vee \neg x+w=1$
23: $\neg \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad$ by
16: $\neg x+(\mathrm{P} w)=0$
8: $\neg \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad x+(\mathrm{P} w)=0$
24: $\neg 0=w \quad$ by
21: $\neg x+w=x$
19: $\neg 0=w \quad \vee \quad x+w=x$
25: $\quad \neg \mathrm{S}(\mathrm{P} w)=w \quad \vee \quad x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0 \quad$ by
22: $x+w=\mathrm{S} 0$
13: $\neg \mathrm{S}(\mathrm{P} w)=w \quad \vee \quad x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+w=\mathrm{S} 0$
26: $\quad \neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0 \quad$ by
23: $\neg \mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0$
20: $\mathrm{S}(x+(\mathrm{P} w))=\mathrm{S} 0 \quad \vee \quad \neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0$

27: $\quad \mathrm{S}(\mathrm{P} w)=w \quad$ by
24: $\neg 0=w$
5: $0=w \quad \vee \quad \mathrm{~S}(\mathrm{P} w)=w$
28: $\quad \neg \mathrm{S}(\mathrm{P} w)=w \quad$ by
26: $\neg x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0$
25: $\neg \mathrm{S}(\mathrm{P} w)=w \quad \vee \quad x+(\mathrm{S}(\mathrm{P} w))=\mathrm{S} 0$
29: $Q E A \quad$ by
27: $\mathrm{S}(\mathrm{P} w)=w$
28: $\neg \mathrm{S}(\mathrm{P} w)=w$

