Proof of Theorem 200

The theorem to be proved is

$$x \le 1 \quad \rightarrow \quad x = 0 \quad \lor \quad x = 1$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (1)] \& [\neg (x) = (0)] \& [\neg (x) = (1)]]$$

Special cases of the hypothesis and previous results:

0:
$$x < 1$$
 from H: x

1:
$$\neg 0 = x$$
 from H: x

2:
$$\neg 1 = x$$
 from H: x

3:
$$S0 = 1$$
 from 115

4:
$$\neg x \le 1 \lor x + w = 1$$
 from 167; x ;1: w

5:
$$0 = w \lor S(Pw) = w$$
 from $22; w$

6:
$$x + 0 = x$$
 from 12; x ; Pw

7:
$$S(x + (Pw)) = x + (S(Pw))$$
 from 12;x;Pw

8:
$$\neg S(x + (Pw)) = S0 \lor x + (Pw) = 0$$
 from $4x + (Pw) = 0$

9:
$$\neg x + (Pw) = 0 \lor 0 = x$$
 from 15;x;Pw

Equality substitutions:

10:
$$\neg S0 = 1 \lor x + w = S0 \lor \neg x + w = 1$$

11:
$$\neg x + w = 1 \lor \neg x + w = x \lor 1 = x$$

12:
$$\neg 0 = w \lor \neg x + 0 = x \lor x + w = x$$

13:
$$\neg S(Pw) = w \lor x + (S(Pw)) = S0 \lor \neg x + (w) = S0$$

14:
$$\neg S(x + (Pw)) = x + (S(Pw)) \lor S(x + (Pw)) = S0 \lor \neg x + (S(Pw)) = S0$$

Inferences:

15:
$$x + w = 1$$
 by

0:
$$x \le 1$$

$$4: \ \neg \ x \le 1 \quad \lor \quad x + w = 1$$

16:
$$\neg x + (Pw) = 0$$
 by

1:
$$\neg 0 = x$$

9:
$$\neg x + (Pw) = 0 \lor 0 = x$$

17:
$$\neg x + w = 1 \quad \lor \quad \neg x + w = x$$
 by

$$2: \neg 1 = x$$

11:
$$\neg x + w = 1 \quad \lor \quad \neg x + w = x \quad \lor \quad 1 = x$$

18:
$$x + w = S0 \quad \lor \quad \neg x + w = 1$$
 by

$$3: S0 = 1$$

10:
$$\neg S0 = 1 \lor x + w = S0 \lor \neg x + w = 1$$

19:
$$\neg 0 = w \lor x + w = x$$
 by

6:
$$x + 0 = x$$

12:
$$\neg 0 = w \lor \neg x + 0 = x \lor x + w = x$$

20:
$$S(x + (Pw)) = S0 \quad \lor \quad \neg x + (S(Pw)) = S0$$
 by

7:
$$S(x + (Pw)) = x + (S(Pw))$$

14:
$$\neg S(x + (Pw)) = x + (S(Pw)) \lor S(x + (Pw)) = S0 \lor \neg x + (S(Pw)) = S0$$

$$21: \quad \neg \ x + w = x \qquad \text{by}$$

15:
$$x + w = 1$$

17:
$$\neg x + w = 1 \lor \neg x + w = x$$

22:
$$x + w = S0$$
 by

15:
$$x + w = 1$$

18:
$$x + w = S0 \quad \lor \quad \neg x + w = 1$$

23:
$$\neg S(x + (Pw)) = S0$$
 by

16:
$$\neg x + (Pw) = 0$$

8:
$$\neg S(x + (Pw)) = S0 \lor x + (Pw) = 0$$

24:
$$\neg 0 = w$$
 by

21:
$$\neg x + w = x$$

$$19: \neg 0 = w \quad \lor \quad x + w = x$$

25:
$$\neg S(Pw) = w \lor x + (S(Pw)) = S0$$
 by

22:
$$x + w = S0$$

13:
$$\neg S(Pw) = w \lor x + (S(Pw)) = S0 \lor \neg x + w = S0$$

26:
$$\neg x + (S(Pw)) = S0$$
 by

23:
$$\neg S(x + (Pw)) = S0$$

20:
$$S(x + (Pw)) = S0 \lor \neg x + (S(Pw)) = S0$$

27:
$$S(Pw) = w$$
 by

24:
$$\neg 0 = w$$

5:
$$\mathbf{0} = \mathbf{w} \quad \lor \quad \mathbf{S}(\mathbf{P}w) = w$$

28:
$$\neg S(Pw) = w$$
 by

26:
$$\neg x + (S(Pw)) = S0$$

25:
$$\neg S(Pw) = w \lor x + (S(Pw)) = S0$$

29:
$$QEA$$
 by

27:
$$S(Pw) = w$$

28:
$$\neg S(Pw) = w$$