Proof of Theorem 19i

The theorem to be proved is

$$x - x = 0 \rightarrow Sx - Sx = 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x-x)=(0)] \& [\neg ((Sx)-(Sx))=(0)]]$$

Special cases of the hypothesis and previous results:

0:
$$x - x = 0$$
 from H: x

1:
$$\neg (Sx) - (Sx) = 0$$
 from H:x

2:
$$(Sx) - (Sx) = x - x$$
 from $18; x; x$

Equality substitutions:

3:
$$\neg x - x = 0 \lor \neg (Sx) - (Sx) = \frac{x - x}{} \lor (Sx) - (Sx) = 0$$

Inferences:

4:
$$\neg (Sx) - (Sx) = x - x \lor (Sx) - (Sx) = 0$$
 by

$$0: x - x = 0$$

3:
$$\neg x - x = 0 \quad \lor \quad \neg (Sx) - (Sx) = x - x \quad \lor \quad (Sx) - (Sx) = 0$$

5:
$$\neg (Sx) - (Sx) = x - x$$
 by

1:
$$\neg (Sx) - (Sx) = 0$$

4:
$$\neg (Sx) - (Sx) = x - x \lor (Sx) - (Sx) = 0$$

$$6: QEA$$
 by

2:
$$(Sx) - (Sx) = x - x$$

5:
$$\neg (Sx) - (Sx) = x - x$$