Proof of Theorem 19i

The theorem to be proved is
$x-x=0 \quad \rightarrow \quad \mathrm{~S} x-\mathrm{S} x=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x-x)=(0)] \quad \& \quad[\neg((\mathrm{~S} x)-(\mathrm{S} x))=(0)]]$

Special cases of the hypothesis and previous results:

0: $x-x=0 \quad$ from $\quad \mathrm{H}: x$
1: $\neg(\mathrm{S} x)-(\mathrm{S} x)=0 \quad$ from $\mathrm{H}: x$
2: $\quad(\mathrm{S} x)-(\mathrm{S} x)=x-x \quad$ from $\quad \underline{18} ; x ; x$

Equality substitutions:

3: $\quad \neg x-x=0 \quad \vee \quad \neg(\mathrm{~S} x)-(\mathrm{S} x)=x-x \quad \vee \quad(\mathrm{~S} x)-(\mathrm{S} x)=0$

Inferences:

4: $\quad \neg(\mathrm{S} x)-(\mathrm{S} x)=x-x \quad \vee \quad(\mathrm{~S} x)-(\mathrm{S} x)=0 \quad$ by
$0: x-x=0$
3: $\neg x-x=0 \quad \vee \quad \neg(\mathrm{~S} x)-(\mathrm{S} x)=x-x \quad \vee \quad(\mathrm{~S} x)-(\mathrm{S} x)=0$
5: $\quad \neg(\mathrm{S} x)-(\mathrm{S} x)=x-x \quad$ by
1: $\neg(\mathrm{S} x)-(\mathrm{S} x)=0$
4: $\neg(\mathrm{S} x)-(\mathrm{S} x)=x-x \quad \vee \quad(\mathrm{~S} x)-(\mathrm{S} x)=0$
6: $Q E A$ by
2: $(\mathrm{S} x)-(\mathrm{S} x)=x-x$
5: $\neg(\mathrm{S} x)-(\mathrm{S} x)=x-x$

