Proof of Theorem 198

The theorem to be proved is

$$x \cdot y = x \cdot z$$
 & $x \neq 0$ \rightarrow $y = z$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x \cdot y) = (x \cdot z)] \& [\neg (x) = (0)] \& [\neg (y) = (z)]]$$

Special cases of the hypothesis and previous results:

0:
$$x \cdot z = x \cdot y$$
 from H:x:y:z

1:
$$\neg 0 = x$$
 from H: $x:y:z$

2:
$$\neg z = y$$
 from H: $x:y:z$

3:
$$y \cdot x = x \cdot y$$
 from $105;x;y$

4:
$$z \cdot x = x \cdot z$$
 from $105;x;z$

5:
$$\neg z \cdot x = y \cdot x \quad \lor \quad 0 = x \quad \lor \quad z = y$$
 from $\underline{141}; y; x; z$

Equality substitutions:

6:
$$\neg x \cdot z = x \cdot y \quad \lor \quad y \cdot x = x \cdot z \quad \lor \quad \neg y \cdot x = x \cdot y$$

7:
$$\neg z \cdot x = x \cdot z \quad \lor \quad z \cdot x = y \cdot x \quad \lor \quad \neg x \cdot z = y \cdot x$$

Inferences:

8:
$$y \cdot x = x \cdot z \quad \lor \quad \neg \ y \cdot x = x \cdot y$$
 by

$$0: x \cdot z = x \cdot y$$

6:
$$\neg x \cdot z = x \cdot y \quad \lor \quad y \cdot x = x \cdot z \quad \lor \quad \neg y \cdot x = x \cdot y$$

9:
$$\neg z \cdot x = y \cdot x \lor z = y$$
 by

1:
$$\neg 0 = x$$

5:
$$\neg z \cdot x = y \cdot x \quad \lor \quad 0 = x \quad \lor \quad z = y$$

10:
$$\neg z \cdot x = y \cdot x$$
 by

$$2: \neg z = y$$

9:
$$\neg z \cdot x = y \cdot x \quad \lor \quad z = y$$

- 11: $y \cdot x = x \cdot z$ by
 - $3: \ y \cdot x = x \cdot y$
 - 8: $y \cdot x = x \cdot z \quad \lor \quad \neg \ y \cdot x = x \cdot y$
- 12: $z \cdot x = y \cdot x \quad \lor \quad \neg \ y \cdot x = x \cdot z$ by
 - $4: \ z \cdot x = x \cdot z$
 - 7: $\neg z \cdot x = x \cdot z \quad \lor \quad z \cdot x = y \cdot x \quad \lor \quad \neg y \cdot x = x \cdot z$
- 13: $\neg y \cdot x = x \cdot z$ by
 - 10: $\neg z \cdot x = y \cdot x$
 - 12: $\mathbf{z} \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{x} \quad \lor \quad \neg \ \mathbf{y} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{z}$
- 14: QEA by
 - 11: $y \cdot x = x \cdot z$
 - 13: $\neg y \cdot x = x \cdot z$