Proof of Theorem 196

The theorem to be proved is

$$x \oplus \epsilon = x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x \oplus \epsilon) = (x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg x \oplus \epsilon = x$$
 from H:x

1:
$$\neg Q(x \oplus \epsilon) = Qx \lor \neg R(x \oplus \epsilon) = Rx \lor x \oplus \epsilon = x$$
 from 193; $x \oplus \epsilon$; $x \oplus \epsilon = x$

2:
$$Q\epsilon = 1$$
 from 189

3:
$$R\epsilon = 0$$
 from 189

4:
$$(Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon)$$
 from 180; $x;\epsilon$

5:
$$((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon)$$
 from 180;x; ϵ

6:
$$(Qx) \cdot 1 = Qx$$
 from $\underline{195}; Qx$

7:
$$(Rx) \cdot 1 = Rx$$
 from $195;Rx$

8:
$$(Rx) + 0 = Rx$$
 from $\underline{12}; Rx$

Equality substitutions:

9:
$$\neg Q\epsilon = 1 \lor \neg (Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon) \lor (Qx) \cdot (1) = Q(x \oplus \epsilon)$$

10:
$$\neg Q\epsilon = 1 \lor \neg ((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon) \lor ((Rx) \cdot (1)) + (R\epsilon) = R(x \oplus \epsilon)$$

11:
$$\neg \operatorname{R} \epsilon = 0 \quad \lor \quad \neg ((\operatorname{R} x) \cdot 1) + (\operatorname{R} \epsilon) = \operatorname{R}(x \oplus \epsilon) \quad \lor \quad ((\operatorname{R} x) \cdot 1) + (\operatorname{0}) = \operatorname{R}(x \oplus \epsilon)$$

12:
$$\neg (Qx) \cdot 1 = Qx \quad \lor \quad \neg Q(x \oplus \epsilon) = (Qx) \cdot 1 \quad \lor \quad Q(x \oplus \epsilon) = Qx$$

13:
$$\neg (Rx) \cdot 1 = Rx \lor ((Rx) \cdot 1) + 0 = Rx \lor \neg (Rx) + 0 = Rx$$

14:
$$\neg ((Rx) \cdot 1) + 0 = R(x \oplus \epsilon) \lor \neg ((Rx) \cdot 1) + 0 = Rx \lor R(x \oplus \epsilon) = Rx$$

Inferences:

15:
$$\neg Q(x \oplus \epsilon) = Qx \lor \neg R(x \oplus \epsilon) = Rx$$
 by
0: $\neg x \oplus \epsilon = x$
1: $\neg Q(x \oplus \epsilon) = Qx \lor \neg R(x \oplus \epsilon) = Rx \lor x \oplus \epsilon = x$

1:
$$\neg Q(x \oplus \epsilon) = Qx \lor \neg R(x \oplus \epsilon) = Rx \lor x \oplus \epsilon = x$$

16:
$$\neg (Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon) \lor Q(x \oplus \epsilon) = (Qx) \cdot 1$$
 by 2: $Q\epsilon = 1$ 9: $\neg Q\epsilon = 1 \lor \neg (Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon) \lor Q(x \oplus \epsilon) = (Qx) \cdot 1$ 17: $\neg ((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon) \lor ((Rx) \cdot 1) + (R\epsilon) = R(x \oplus \epsilon)$ by 2: $Q\epsilon = 1$ 10: $\neg Q\epsilon = 1 \lor \neg ((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon) \lor ((Rx) \cdot 1) + (R\epsilon) = R(x \oplus \epsilon)$ by 3: $R\epsilon = 0$ 11: $\neg R\epsilon = 0 \lor \neg ((Rx) \cdot 1) + (R\epsilon) = R(x \oplus \epsilon) \lor ((Rx) \cdot 1) + 0 = R(x \oplus \epsilon)$ by 4: $(Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon)$ 16: $\neg (Qx) \cdot (Q\epsilon) = Q(x \oplus \epsilon)$ by 5: $((Rx) \cdot 1) + (R\epsilon) = R(x \oplus \epsilon)$ by 5: $((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon)$ by 5: $((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon)$ by 5: $((Rx) \cdot (Q\epsilon)) + (R\epsilon) = R(x \oplus \epsilon)$ by 6: $(Qx) \cdot 1 = Qx$ by 7: $(Rx) \cdot (Q\epsilon) + (R\epsilon) = R(x \oplus \epsilon) = (Qx) \cdot 1$ by 7: $(Rx) \cdot (1 = Rx) \lor \neg (Rx) + 0 = Rx$ by 7: $(Rx) \cdot 1 = Rx$ 13: $\neg (Rx) \cdot 1 = Rx$ by 8: $(Rx) \cdot 1 + 0 = Rx$ by 8: $(Rx) \cdot 1 + 0 = Rx$ by 8: $(Rx) \cdot 1 + 0 = Rx$ by 8: $(Rx) \cdot 1 + 0 = Rx$ by 9. $(Rx) \cdot 1 + 0 = Rx$ 22: $((Rx) \cdot 1) + 0 = Rx$ by 9. $(Rx) \cdot 1 + 0 = Rx$ 24: $(Rx) \cdot 1 + 0 = Rx$ by 9. $(Rx) \cdot 1 + 0 = Rx$ 25: $((Rx) \cdot 1) + 0 = Rx \lor \neg (Rx) + 0 = Rx$ 26: $((Rx) \cdot 1) + (R\epsilon) = R(x \oplus \epsilon)$ by 20: $((Rx) \cdot 1) + (R\epsilon) =$

27:
$$\neg R(x \oplus \epsilon) = Rx$$
 by

24:
$$Q(x \oplus \epsilon) = Qx$$

15:
$$\neg \mathbf{Q}(x \oplus \epsilon) = \mathbf{Q}x \quad \lor \quad \neg \mathbf{R}(x \oplus \epsilon) = \mathbf{R}x$$

28:
$$R(x \oplus \epsilon) = Rx$$
 by

25:
$$((Rx) \cdot 1) + 0 = R(x \oplus \epsilon)$$

26:
$$\neg ((Rx) \cdot 1) + 0 = R(x \oplus \epsilon) \lor R(x \oplus \epsilon) = Rx$$

29:
$$QEA$$
 by

27:
$$\neg R(x \oplus \epsilon) = Rx$$

28:
$$R(x \oplus \epsilon) = Rx$$