Proof of Theorem 196

The theorem to be proved is
$x \oplus \epsilon=x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x \oplus \epsilon)=(x)]]$

Special cases of the hypothesis and previous results:

Equality substitutions:

9: $\neg \mathrm{Q} \epsilon=1 \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} \epsilon)=\mathrm{Q}(x \oplus \epsilon) \quad \vee \quad(\mathrm{Q} x) \cdot(1)=\mathrm{Q}(x \oplus \epsilon)$
10: $\neg \mathrm{Q} \epsilon=1 \quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \epsilon))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot(1))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon)$
11: $\neg \mathrm{R} \epsilon=0 \quad \vee \neg((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+(0)=\mathrm{R}(x \oplus \epsilon)$
12: $\neg(\mathrm{Q} x) \cdot 1=\mathrm{Q} x \quad \vee \quad \neg \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x$
13: $\neg(\mathrm{R} x) \cdot 1=\mathrm{R} x \quad \vee((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \neg(\mathrm{R} x)+0=\mathrm{R} x$
14: $\neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad \neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$

Inferences:

15: $\neg \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x \quad$ by
0: $\neg x \oplus \epsilon=x$
1: $\neg \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x \quad \vee \quad x \oplus \epsilon=x$

16: $\quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} \epsilon)=\mathrm{Q}(x \oplus \epsilon) \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad$ by
2: $\mathrm{Q} \epsilon=1$
9: $\neg \mathrm{Q} \epsilon=1 \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} \epsilon)=\mathrm{Q}(x \oplus \epsilon) \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1$
17: $\quad \neg((\mathrm{R} x) \cdot(\mathrm{Q} \epsilon))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad$ by
2: $\mathrm{Q} \epsilon=1$
10: $\neg \mathrm{Q} \epsilon=1 \quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \epsilon))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon)$
18: $\neg((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad$ by
3: $\mathrm{R} \epsilon=0$
11: $\neg \mathrm{R} \epsilon=0 \quad \vee \neg((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon)$
19: $\mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad$ by
4: $(\mathrm{Q} x) \cdot(\mathrm{Q} \epsilon)=\mathrm{Q}(x \oplus \epsilon)$
16: $\neg(\mathrm{Q} x) \cdot(\mathrm{Q} \epsilon)=\mathrm{Q}(x \oplus \epsilon) \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1$
20: $\quad((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad$ by
5: $((\mathrm{R} x) \cdot(\mathrm{Q} \epsilon))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon)$
17: $\neg((\mathrm{R} x) \cdot(\mathrm{Q} \epsilon))+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon)$
21: $\neg \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x \quad$ by
6: $(\mathrm{Q} x) \cdot 1=\mathrm{Q} x$
12: $\neg(\mathrm{Q} x) \cdot 1=\mathrm{Q} x \quad \vee \quad \neg \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x$
22: $\quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \neg(\mathrm{R} x)+0=\mathrm{R} x \quad$ by
7: $(\mathrm{R} x) \cdot 1=\mathrm{R} x$
13: $\neg(\mathrm{R} x) \cdot 1=\mathrm{R} x \quad \vee((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \neg(\mathrm{R} x)+0=\mathrm{R} x$
23: $\quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad$ by
8: $(\mathrm{R} x)+0=\mathrm{R} x$
22: $((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \neg(\mathrm{R} x)+0=\mathrm{R} x$
24: $\quad \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x \quad$ by
19: $\mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1$
21: $\neg \mathrm{Q}(x \oplus \epsilon)=(\mathrm{Q} x) \cdot 1 \quad \vee \quad \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x$
25: $\quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad$ by
20: $((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon)$
18: $\neg((\mathrm{R} x) \cdot 1)+(\mathrm{R} \epsilon)=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon)$
26: $\quad \neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x \quad$ by
23: $((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x$
14: $\neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad \neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R} x \quad \vee \quad \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$

27: $\neg \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x \quad$ by
24: $\mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x$
15: $\neg \mathrm{Q}(x \oplus \epsilon)=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$
28: $\mathrm{R}(x \oplus \epsilon)=\mathrm{R} x \quad$ by
25: $((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon)$
26: $\neg((\mathrm{R} x) \cdot 1)+0=\mathrm{R}(x \oplus \epsilon) \quad \vee \quad \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$
29: $Q E A$ by
27: $\neg \mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$
28: $\mathrm{R}(x \oplus \epsilon)=\mathrm{R} x$

