Proof of Theorem 195

The theorem to be proved is
$x \cdot 1=x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(x \cdot 1)=(x)]]$

Special cases of the hypothesis and previous results:
$0: \quad \neg x \cdot 1=x \quad$ from $\quad \mathrm{H}: x$
1: $1 \cdot x=x \quad$ from $\quad 117 ; x$
2: $\quad 1 \cdot x=x \cdot 1 \quad$ from $\quad 105 ; x ; 1$

Equality substitutions:

3: $\quad \neg 1 \cdot x=x \quad \vee \quad \neg 1 \cdot x=x \cdot 1 \quad \vee \quad x=x \cdot 1$

Inferences:

4: $\quad \neg 1 \cdot x=x \quad \vee \quad \neg 1 \cdot x=x \cdot 1 \quad$ by
$0: \neg x \cdot 1=x$
3: $\neg 1 \cdot x=x \quad \vee \quad \neg 1 \cdot x=x \cdot 1 \quad \vee \quad x \cdot 1=x$
5: $\quad \neg 1 \cdot x=x \cdot 1 \quad$ by
1: $1 \cdot x=x$
4: $\neg 1 \cdot x=x \quad \vee \quad \neg 1 \cdot x=x \cdot 1$
6: $Q E A$ by
2: $1 \cdot x=x \cdot 1$
5: $\neg 1 \cdot x=x \cdot 1$

