Proof of Theorem 195

The theorem to be proved is

$$x \cdot 1 = x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x \cdot 1) = (x)]]$$

Special cases of the hypothesis and previous results:

- 0: $\neg x \cdot 1 = x$ from H:x
- 1: $1 \cdot x = x$ from 117; x
- 2: $1 \cdot x = x \cdot 1$ from 105; x; 1

Equality substitutions:

3:
$$\neg 1 \cdot x = x \quad \lor \quad \neg 1 \cdot x = x \cdot 1 \quad \lor \quad x = x \cdot 1$$

Inferences:

- 4: $\neg 1 \cdot x = x \lor \neg 1 \cdot x = x \cdot 1$ by
 - $0: \neg x \cdot 1 = x$
 - 3: $\neg 1 \cdot x = x \quad \lor \quad \neg 1 \cdot x = x \cdot 1 \quad \lor \quad x \cdot 1 = x$
- 5: $\neg 1 \cdot x = x \cdot 1$ by
 - 1: $1 \cdot x = x$
 - $4: \neg 1 \cdot x = x \lor \neg 1 \cdot x = x \cdot 1$
- 6: QEA by
 - $2: \ 1 \cdot x = x \cdot 1$
 - $5: \neg 1 \cdot x = x \cdot 1$