Proof of Theorem 193

The theorem to be proved is
$\mathrm{Q} x=\mathrm{Q} y \quad \& \quad \mathrm{R} x=\mathrm{R} y \quad \rightarrow \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\mathrm{Q} x)=(\mathrm{Q} y)] \quad \& \quad[(\mathrm{R} x)=(\mathrm{R} y)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:

0: $\quad \mathrm{Q} y=\mathrm{Q} x \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad \mathrm{R} y=\mathrm{R} x \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad \neg y=x \quad$ from $\quad \mathrm{H}: x: y$
3: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad \underline{166} ; x$
4: $\quad(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y \quad$ from $\quad \underline{166 ; y}$
5: $\neg \mathrm{S} y=\mathrm{S} x \quad \vee \quad y=x \quad$ from $\quad \underline{4} ; x ; y$

Equality substitutions:

6: $\neg \mathrm{Q} y=\mathrm{Q} x \quad \vee \neg(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y \quad \vee(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y$
7: $\quad \neg \mathrm{R} y=\mathrm{R} x \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
8: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \mathrm{~S} y=\mathrm{S} x$

Inferences:

9: $\quad \neg(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad$ by
$0: \mathrm{Q} y=\mathrm{Q} x$
6: $\neg \mathrm{Q} y=\mathrm{Q} x \quad \vee \quad \neg(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y$
10: $\quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ by
1: $\mathrm{R} y=\mathrm{R} x$
7: $\neg \mathrm{R} y=\mathrm{R} x \quad \vee(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
11: $\neg \mathrm{S} y=\mathrm{S} x \quad$ by
2: $\neg y=x$
5: $\neg \mathrm{S} y=\mathrm{S} x \quad \vee \quad y=x$

12: $\quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad$ by
3: $(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
10: $(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
13: $\quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad$ by
4: $(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y$
9: $\neg(\mathrm{Q} y)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y$
14: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad$ by
11: $\neg \mathrm{S} y=\mathrm{S} x$
8: $\neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x \quad \vee \quad \mathrm{~S} y=\mathrm{S} x$
15: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad$ by
12: $(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x$
14: $\neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y \quad \vee \quad \neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} x$
16: $Q E A$ by
13: $(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y$
15: $\neg(\mathrm{Q} x)+(\mathrm{R} y)=\mathrm{S} y$

