Proof of Theorem 193

The theorem to be proved is

$$Qx = Qy$$
 & $Rx = Ry \rightarrow x = y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Qx) = (Qy)] \& [(Rx) = (Ry)] \& [\neg (x) = (y)]]$$

Special cases of the hypothesis and previous results:

0:
$$Qy = Qx$$
 from $H:x:y$

1:
$$Ry = Rx$$
 from $H:x:y$

2:
$$\neg y = x$$
 from H:x:y

3:
$$(Qx) + (Rx) = Sx$$
 from 166; x

4:
$$(Qy) + (Ry) = Sy$$
 from 166; y

5:
$$\neg Sy = Sx \lor y = x$$
 from $\underline{4};x;y$

Equality substitutions:

6:
$$\neg Qy = Qx \lor \neg (Qy) + (Ry) = Sy \lor (Qx) + (Ry) = Sy$$

7:
$$\neg Ry = Rx \lor (Qx) + (Ry) = Sx \lor \neg (Qx) + (Rx) = Sx$$

8:
$$\neg (Qx) + (Ry) = Sy \lor \neg (Qx) + (Ry) = Sx \lor Sy = Sx$$

Inferences:

9:
$$\neg (Qy) + (Ry) = Sy \lor (Qx) + (Ry) = Sy$$
 by

0:
$$Qy = Qx$$

6:
$$\neg \mathbf{Q}y = \mathbf{Q}x \quad \lor \quad \neg (\mathbf{Q}y) + (\mathbf{R}y) = \mathbf{S}y \quad \lor \quad (\mathbf{Q}x) + (\mathbf{R}y) = \mathbf{S}y$$

10:
$$(Qx) + (Ry) = Sx \quad \lor \quad \neg (Qx) + (Rx) = Sx$$
 by

1:
$$Ry = Rx$$

7:
$$\neg \mathbf{R}y = \mathbf{R}x \quad \lor \quad (\mathbf{Q}x) + (\mathbf{R}y) = \mathbf{S}x \quad \lor \quad \neg (\mathbf{Q}x) + (\mathbf{R}x) = \mathbf{S}x$$

11:
$$\neg Sy = Sx$$
 by

$$2: \neg y = x$$

5:
$$\neg Sy = Sx \lor y = x$$

12:
$$(Qx) + (Ry) = Sx$$
 by

3:
$$(Qx) + (Rx) = Sx$$

10:
$$(Qx) + (Ry) = Sx \quad \lor \quad \neg (Qx) + (Rx) = Sx$$

13:
$$(Qx) + (Ry) = Sy$$
 by

4:
$$(Qy) + (Ry) = Sy$$

9:
$$\neg (Qy) + (Ry) = Sy \lor (Qx) + (Ry) = Sy$$

14:
$$\neg (Qx) + (Ry) = Sy \lor \neg (Qx) + (Ry) = Sx$$
 by

11:
$$\neg Sy = Sx$$

8:
$$\neg (Qx) + (Ry) = Sy \lor \neg (Qx) + (Ry) = Sx \lor Sy = Sx$$

15:
$$\neg (Qx) + (Ry) = Sy$$
 by

12:
$$(Qx) + (Ry) = Sx$$

14:
$$\neg (Qx) + (Ry) = Sy \lor \neg (Qx) + (Ry) = Sx$$

16:
$$QEA$$
 by

13:
$$(Qx) + (Ry) = Sy$$

15:
$$\neg (Qx) + (Ry) = Sy$$