Proof of Theorem 192

The theorem to be proved is

$$Q\underline{1} = 2$$
 & $R\underline{1} = 1$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (Q\underline{1}) = (2) \lor \neg (R\underline{1}) = (1)]]$

Special cases of the hypothesis and previous results:

- 0: $\neg Q\underline{1} = 2 \lor \neg R\underline{1} = 1$ from H 1: S(S0) = 2 from <u>116</u> 2: S0 = 1 from <u>115</u> 3: $\underline{1} = 2$ from <u>187</u> 4: 2 + 0 = 2 from <u>12</u>;2;0 5: S(2 + 0) = 2 + (S0) from <u>12</u>;2;0 6: 2 is a power of two from <u>190</u> 7: 1 < S1 from <u>125</u>;1
- 8: $\neg 2+1 = S2 \lor \neg 2$ is a power of two $\lor \neg 1 < 2 \lor Q2 = 2$ from <u>171;</u>2;2;1 9: $\neg 2+1 = S2 \lor \neg 2$ is a power of two $\lor \neg 1 < 2 \lor R2 = 1$ from <u>171;</u>2;2;1

Equality substitutions:

10:
$$\neg S0 = 1 \lor \neg S(S0) = 2 \lor S(1) = 2$$

11: $\neg S0 = 1 \lor \neg S(2+0) = 2 + (S0) \lor S(2+0) = 2 + (1)$
12: $\neg \underline{1} = 2 \lor Q\underline{1} = 2 \lor \neg Q\underline{2} = 2$
13: $\neg \underline{1} = 2 \lor R\underline{1} = 1 \lor \neg R\underline{2} = 1$
14: $\neg 2 + 0 = 2 \lor \neg S(2+0) = 2 + 1 \lor S(2) = 2 + 1$
15: $\neg S1 = 2 \lor \neg 1 < S1 \lor 1 < 2$

Inferences:

16:	$\neg S0 = 1 \lor S1 = 2 by$ 1: $S(S0) = 2$
17:	10: $\neg S0 = 1 \lor \neg S(S0) = 2 \lor S1 = 2$ $\neg S(2+0) = 2 + (S0) \lor S(2+0) = 2 + 1$ by
	2: S0 = 1
10	11: $\neg S0 = 1$ $\lor \neg S(2+0) = 2 + (S0)$ $\lor S(2+0) = 2 + 1$
18:	SI = 2 by 2: $S0 - 1$
	16: $\neg S0 = 1 \lor S1 = 2$
19:	$Q\underline{1} = 2 \lor \neg Q2 = 2 \qquad \text{by}$ 3: 1 = 2
	$12: \neg \underline{1} = 2 \lor Q\underline{1} = 2 \lor \neg Q2 = 2$
20:	$R\underline{1} = 1 \forall \neg R2 = 1 \qquad \text{by}$ 3: $1 = 2$
	$13: \neg \underline{1} = 2 \lor \underline{R}\underline{1} = 1 \lor \neg \underline{R}2 = 1$
21:	$\neg S(2+0) = 2+1 \lor 2+1 = S2$ by
	4: $2 + 0 = 2$
	14: $\neg 2 + 0 = 2 \lor \neg S(2 + 0) = 2 + 1 \lor 2 + 1 = S2$
22:	S(2+0) = 2+1 by
	5: $S(2+0) = 2 + (S0)$ 17: $-S(2+0) = 2 + (S0)$ $(S(2+0) = 2 + 1)$
<u>.</u>	17. $(2+0) = 2 + (50)$ $(52+0) = 2 + 1$
25:	$\neg 2 + 1 = 52$ \lor $\neg 1 < 2$ \lor $Q2 = 2$ by 6: 2 is a power of two
	8: $\neg 2 + 1 = S2 \lor \neg 2$ is a power of two $\lor \neg 1 < 2 \lor Q2 = 2$
24:	$\neg 2 + 1 = S2 \lor \neg 1 < 2 \lor R2 = 1$ by
	9: $\neg 2 + 1 = S2 \lor \neg 2$ is a power of two $\lor \neg 1 < 2 \lor R2 = 1$
25:	$\neg S1 = 2 \lor 1 < 2 $ by
	7: $1 < S1$
	15: \neg S1 = 2 \lor \neg 1 < S1 \lor 1 < 2
26:	1 < 2 by
	18: $S1 = 2$
	25: $\neg 81 = 2 \lor 1 < 2$

27:	2 + 1 = S2 by 22: S(2 + 0) = 2 + 1 $21: \neg S(2 + 0) = 2 + 1 \lor 2 + 1 = S2$
28:	$\neg 2 + 1 = S2 \lor Q2 = 2$ by 26: 1 < 2
29:	23: $\neg 2 + 1 = 52$ \lor $\neg 1 < 2$ \lor $Q2 = 2$ $\neg 2 + 1 = 52$ \lor $R2 = 1$ by 26: $1 < 2$
	24: $\neg 2 + 1 = S2 \lor \neg 1 < 2 \lor R2 = 1$
30:	Q2 = 2 by 27: $2 + 1 = S2$ 28: $\neg 2 + 1 = S2 \lor Q2 = 2$
31:	R2 = 1 by 27: $2 + 1 = S2$ 29: $\neg 2 + 1 = S2 \lor R2 = 1$
32:	$Q\underline{1} = 2 \qquad \text{by}$ $30: \ Q\underline{2} = 2$ $19: \ Q\underline{1} = 2 \lor \neg \ Q\underline{2} = 2$
33:	R <u>1</u> = 1 by 31: R2 = 1 20: R <u>1</u> = 1 ∨ ¬ R2 = 1
34:	$\neg \underline{R1} = 1 \qquad by$ 32: $\underline{Q1} = 2$ 0: $\neg \underline{Q1} = 2 \lor \neg \underline{R1} = 1$
35:	QEA by 33: $\mathbf{R}\underline{1} = 1$ 34: $\neg \mathbf{R}\underline{1} = 1$