Proof of Theorem 191

The theorem to be proved is

 $Q\underline{0} = 2$ & $R\underline{0} = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\underline{Q0}) = (2) \lor \neg (\underline{R0}) = (0)]]$

Special cases of the hypothesis and previous results:

0: $\neg Q\underline{0} = 2 \lor \neg R\underline{0} = 0$ from H S(S0) = 21: from <u>116</u> from <u>115</u> 2: S0 = 1from <u>186</u> 3: 0 = 14: 2 + 0 = 2from <u>12</u>;2 5: 2 is a power of two from 190 6: 0 < S0from 125;0 7: 1 < S1from 125;18: $\neg 0 < 1 \lor 0 \le 1$ from <u>56</u> \rightarrow ;0;1 9: $\neg 0 \le 1 \lor \neg 1 < 2 \lor 0 < 2$ from 122;0;1;2 10: $\neg 2 + 0 = S1 \lor \neg 2$ is a power of two $\lor \neg 0 < 2 \lor Q1 = 2$ from 171;1;2;0 11: $\neg 2 + 0 = S1 \lor \neg 2$ is a power of two $\lor \neg 0 < 2 \lor R1 = 0$ from <u>171</u>;1;2;0

Equality substitutions:

Inferences:

18:	$\neg S0 = 1 \lor S1 = 2 \text{by}$ 1: $S(S0) = 2$ 12: $\neg S0 = 1 \lor \neg S(S0) = 2 \lor S1 = 2$
19:	$\neg 0 < S0 \lor 0 < 1$ by 2: S0 = 1
20:	13: $\neg S0 = 1 \lor \neg 0 < S0 \lor 0 < 1$ S1 = 2 by 2: S0 = 1 18: $\neg S0 = 1 \lor S1 = 2$
21:	$Q\underline{0} = 2 \lor \neg \ Q1 = 2 \qquad \text{by}$ 3: $\underline{0} = 1$ 14: $\neg \ \underline{0} = 1 \lor Q\underline{0} = 2 \lor \neg \ Q1 = 2$
22:	$R\underline{0} = 0 \forall \neg R1 = 0 \text{by}$ $3: \underline{0} = 1$ $15: \neg \ \underline{0} = 1 \forall R\underline{0} = 0 \forall \neg R1 = 0$
23:	$16. \neg \underline{0} = 1 \lor \neg R \underline{0} = 0 \lor \lor \neg R \underline{1} = 0$ $2 + 0 = S1 \lor \neg S1 = 2 \text{by}$ $4: 2 + 0 = 2$ $16: \neg 2 + 0 = 2 \lor 2 + 0 = S1 \lor \neg S1 = 2$
24:	$\neg 2 + 0 = S1 \lor \neg 0 < 2 \lor Q1 = 2 \qquad by$ 5: 2 is a power of two 10: $\neg 2 + 0 = S1 \lor \neg 2 \text{ is a power of two} \lor \neg 0 < 2 \lor Q1 = 2$
25:	$\neg 2 + 0 = S1 \lor \neg 0 < 2 \lor R1 = 0 by$ 5: 2 is a power of two 11: $\neg 2 + 0 = S1 \lor \neg 2 \text{ is a power of two} \lor \neg 0 < 2 \lor R1 = 0$
26:	0 < 1 by 6: $0 < S0$ $19: \neg 0 < S0 \lor 0 < 1$
27:	$\neg S1 = 2 \lor 1 < 2 \qquad \text{by}$ 7: $1 < S1$ 17: $\neg S1 = 2 \lor \neg 1 < S1 \lor 1 < 2$
28:	2 + 0 = S1 by20: S1 = 223: 2 + 0 = S1 v ag S1 = 2

29:	1 < 2 by 20: $S1 = 2$ 27: $\neg S1 = 2 \lor 1 < 2$
30:	$0 \le 1$ by 26: $0 < 1$ 8: $\neg 0 < 1 \lor 0 \le 1$
31:	$\neg 0 < 2 \lor Q1 = 2$ by 28: $2 + 0 = S1$ 24: $\neg 2 + 0 = S1 \lor \neg 0 < 2 \lor Q1 = 2$
32:	$\neg 0 < 2 \lor R1 = 0$ by 28: $2 + 0 = S1$ 25: $\neg 2 + 0 = S1 \lor \neg 0 < 2 \lor R1 = 0$
33:	$\neg 0 \le 1 \lor 0 < 2$ by 29: $1 < 2$ 9: $\neg 0 \le 1 \lor \neg 1 < 2 \lor 0 < 2$
34:	0 < 2 by $30: 0 \le 1$ $33: \neg 0 \le 1 \lor 0 < 2$
35:	Q1 = 2 by 34: $0 < 2$ 31: $\neg 0 < 2 \lor Q1 = 2$
36:	R1 = 0 by 34: $0 < 2$ 32: $\neg 0 < 2 \lor$ R1 = 0
37:	Q <u>0</u> = 2 by 35: Q1 = 2 21: Q <u>0</u> = 2 \lor \neg Q1 = 2
38:	$R\underline{0} = 0 \qquad \text{by}$ 36: $R1 = 0$ 22: $R\underline{0} = 0 \lor \neg R1 = 0$
39:	$\neg \underline{R0} = 0 by$ 37: $\underline{Q0} = 2$ 0: $\neg \underline{Q0} = 2 \lor \neg \underline{R0} = 0$

40: QEA by 38: R0 = 0 $39: \neg R0 = 0$