Proof of Theorem 190

The theorem to be proved is

2 is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[\neg (2) \text{ is a power of two}]$

Special cases of the hypothesis and previous results:

- 0: \neg 2 is a power of two from H
- 1: S0 = 1 from 115
- 2: $2 \uparrow 1$ is a power of two from <u>131</u>;1
- 3: $2 \uparrow 0 = 1$ from 126;2;0
- 4: $2 \cdot (2 \uparrow 0) = 2 \uparrow (S0)$ from <u>126</u>;2;0
- 5: $1 \cdot 2 = 2$ from 117;2
- 6: $2 \cdot 1 = 1 \cdot 2$ from 105;2;1

Equality substitutions:

7:
$$\neg S0 = 1 \lor \neg 2 \uparrow (S0) = 2 \lor 2 \uparrow (1) = 2$$

8:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 2 \cdot (2 \uparrow 0) = 2 \uparrow (S0) \quad \lor \quad 2 \cdot (1) = 2 \uparrow (S0)$$

9:
$$\neg 1 \cdot 2 = 2 \quad \lor \quad \neg 2 \cdot 1 = 1 \cdot 2 \quad \lor \quad 2 \cdot 1 = 2$$

10:
$$\neg 2 \uparrow (S0) = 2 \cdot 1 \lor 2 \uparrow (S0) = 2 \lor \neg 2 \cdot 1 = 2$$

11: $\neg 2 \uparrow 1 = 2 \lor \neg 2 \uparrow 1$ is a power of two \lor 2 is a power of two

Inferences:

- 12: $\neg 2 \uparrow 1 = 2 \lor \neg 2 \uparrow 1$ is a power of two by
 - $0: \neg 2$ is a power of two

11: $\neg 2 \uparrow 1 = 2 \lor \neg 2 \uparrow 1$ is a power of two \lor 2 is a power of two

13:
$$\neg 2 \uparrow (S0) = 2 \lor 2 \uparrow 1 = 2$$
 by

1:
$$S0 = 1$$

7:
$$\neg S0 = 1 \lor \neg 2 \uparrow (S0) = 2 \lor 2 \uparrow 1 = 2$$

14:
$$\neg 2 \uparrow 1 = 2$$
 by

2: $2 \uparrow 1$ is a power of two

12:
$$\neg 2 \uparrow 1 = 2 \quad \lor \quad \neg 2 \uparrow 1$$
 is a power of two

15:
$$\neg 2 \cdot (2 \uparrow 0) = 2 \uparrow (S0) \lor 2 \uparrow (S0) = 2 \cdot 1$$
 by

$$3: 2 \uparrow 0 = 1$$

8:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 2 \cdot (2 \uparrow 0) = 2 \uparrow (S0) \quad \lor \quad 2 \uparrow (S0) = 2 \cdot 1$$

16:
$$2 \uparrow (S0) = 2 \cdot 1$$
 by

4:
$$2 \cdot (2 \uparrow 0) = 2 \uparrow (S0)$$

15:
$$\neg 2 \cdot (2 \uparrow 0) = 2 \uparrow (S0) \lor 2 \uparrow (S0) = 2 \cdot 1$$

17:
$$\neg 2 \cdot 1 = 1 \cdot 2 \quad \lor \quad 2 \cdot 1 = 2$$
 by

$$5: 1 \cdot 2 = 2$$

9:
$$\neg 1 \cdot 2 = 2 \quad \lor \quad \neg 2 \cdot 1 = 1 \cdot 2 \quad \lor \quad 2 \cdot 1 = 2$$

18:
$$2 \cdot 1 = 2$$
 by

6:
$$2 \cdot 1 = 1 \cdot 2$$

17:
$$\neg 2 \cdot 1 = 1 \cdot 2 \quad \lor \quad 2 \cdot 1 = 2$$

19:
$$\neg 2 \uparrow (S0) = 2$$
 by

14:
$$\neg 2 \uparrow 1 = 2$$

13:
$$\neg 2 \uparrow (S0) = 2 \lor 2 \uparrow 1 = 2$$

20:
$$2 \uparrow (S0) = 2 \lor \neg 2 \cdot 1 = 2$$
 by

16:
$$2 \uparrow (S0) = 2 \cdot 1$$

10:
$$\neg 2 \uparrow (S0) = 2 \cdot 1 \lor 2 \uparrow (S0) = 2 \lor \neg 2 \cdot 1 = 2$$

21:
$$2 \uparrow (S0) = 2$$
 by

$$18: \ 2 \cdot 1 = 2$$

20:
$$2 \uparrow (S0) = 2 \lor \neg 2 \cdot 1 = 2$$

$$22$$
: QEA by

19:
$$\neg 2 \uparrow (S0) = 2$$

21:
$$2 \uparrow (S0) = 2$$