Proof of Theorem 190

The theorem to be proved is 2 is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(2)$ is a power of two $]]$

Special cases of the hypothesis and previous results:

0: $\neg 2$ is a power of two from H
1: $\quad \mathrm{S} 0=1 \quad$ from $\quad \underline{115}$
2: $2 \uparrow 1$ is a power of two from $131 ; 1$
3: $\quad 2 \uparrow 0=1 \quad$ from $\quad 126 ; 2 ; 0$
4: $\quad 2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0) \quad$ from $\quad 126 ; 2 ; 0$
5: $\quad 1 \cdot 2=2 \quad$ from $\quad 117 ; 2$
6: $\quad 2 \cdot 1=1 \cdot 2 \quad$ from $\quad 105 ; 2 ; 1$

Equality substitutions:

7: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \neg 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad 2 \uparrow(1)=2$
8: $\neg 2 \uparrow 0=1 \quad \vee \neg 2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0) \vee 2 \cdot(1)=2 \uparrow(\mathrm{~S} 0)$
9: $\quad \neg 1 \cdot 2=2 \quad \vee \quad \neg 2 \cdot 1=1 \cdot 2 \quad \vee \quad 2 \cdot 1=2$
10: $\neg 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1 \quad \vee \quad 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad \neg 2 \cdot 1=2$
11: $\neg 2 \uparrow 1=2 \quad \vee \neg 2 \uparrow 1$ is a power of two $\vee 2$ is a power of two

Inferences:

12: $\neg 2 \uparrow 1=2 \quad \vee \neg 2 \uparrow 1$ is a power of two by
0 : $\neg 2$ is a power of two
11: $\neg 2 \uparrow 1=2 \quad \vee \neg 2 \uparrow 1$ is a power of two $\vee 2$ is a power of two
13: $\neg 2 \uparrow(\mathrm{~S} 0)=2 \vee 2 \uparrow 1=2 \quad$ by
1: $\mathrm{S} 0=1$
$7: \neg \mathrm{S} 0=1 \quad \vee \quad \neg 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad 2 \uparrow 1=2$

14: $\neg 2 \uparrow 1=2 \quad$ by
2: $2 \uparrow 1$ is a power of two
12: $\neg 2 \uparrow 1=2 \vee \neg 2 \uparrow 1$ is a power of two
15: $\quad \neg 2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0) \quad \vee \quad 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1 \quad$ by
$3: 2 \uparrow 0=1$
8: $\neg 2 \uparrow 0=1 \quad \vee \quad \neg 2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0) \quad \vee \quad 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1$
16: $\quad 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1 \quad$ by
4: $2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0)$
$15: \neg 2 \cdot(2 \uparrow 0)=2 \uparrow(\mathrm{~S} 0) \quad \vee \quad 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1$
17: $\quad \neg 2 \cdot 1=1 \cdot 2 \quad \vee \quad 2 \cdot 1=2 \quad$ by
5: $1 \cdot 2=2$
9: $\neg 1 \cdot 2=2 \quad \vee \quad \neg 2 \cdot 1=1 \cdot 2 \quad \vee \quad 2 \cdot 1=2$
18: $2 \cdot 1=2 \quad$ by
6: $2 \cdot 1=1 \cdot 2$
17: $\neg 2 \cdot 1=1 \cdot 2 \quad \vee \quad 2 \cdot 1=2$
19: $\quad \neg 2 \uparrow(\mathrm{~S} 0)=2 \quad$ by
14: $\neg 2 \uparrow 1=2$
13: $\neg 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad 2 \uparrow 1=2$
20: $\quad 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad \neg 2 \cdot 1=2 \quad$ by
16: $2 \uparrow(\mathrm{~S} 0)=2 \cdot 1$
10: $\neg 2 \uparrow(\mathrm{~S} 0)=2 \cdot 1 \quad \vee \quad 2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad \neg 2 \cdot 1=2$
21: $\quad 2 \uparrow(\mathrm{~S} 0)=2 \quad$ by
18: $2 \cdot 1=2$
20: $2 \uparrow(\mathrm{~S} 0)=2 \quad \vee \quad \neg 2 \cdot 1=2$
22: $Q E A$ by
19: ᄀ $2 \uparrow(\mathrm{SO})=2$
21: $2 \uparrow(\mathrm{~S} 0)=2$

