Proof of Theorem 18i

The theorem to be proved is

 $Sx - Sy = x - y \rightarrow Sx - SSy = x - Sy$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[((Sx) - (Sy)) = (x - y)] \& [\neg ((Sx) - (S(Sy))) = (x - (Sy))]]$

Special cases of the hypothesis and previous results:

0: (Sx) - (Sy) = x - y from H:x:y 1: $\neg (Sx) - (S(Sy)) = x - (Sy)$ from H:x:y 2: P((Sx) - (Sy)) = (Sx) - (S(Sy)) from <u>17</u>;Sx;Sy 3: P(x - y) = x - (Sy) from <u>17</u>;x;y

Equality substitutions:

4:
$$\neg$$
 (Sx) - (Sy) = x - y $\lor \neg$ P((Sx) - (Sy)) = (Sx) - (S(Sy)) \lor P(x - y) = (Sx) - (S(Sy))

5:
$$\neg P(x-y) = x - (Sy) \lor \neg (Sx) - (S(Sy)) = P(x-y) \lor (Sx) - (S(Sy)) = x - (Sy)$$

Inferences:

6:
$$\neg P((Sx) - (Sy)) = (Sx) - (S(Sy)) \lor (Sx) - (S(Sy)) = P(x - y)$$
 by
0: $(Sx) - (Sy) = x - y$
4: $\neg (Sx) - (Sy) = x - y \lor \neg P((Sx) - (Sy)) = (Sx) - (S(Sy)) \lor (Sx) - (S(Sy)) = P(x - y)$

- 7: $\neg P(x-y) = x (Sy) \lor \neg (Sx) (S(Sy)) = P(x-y)$ by 1: $\neg (Sx) - (S(Sy)) = x - (Sy)$ 5: $\neg P(x-y) = x - (Sy) \lor \neg (Sx) - (S(Sy)) = P(x-y) \lor (Sx) - (S(Sy)) = x - (Sy)$
- 8: (Sx) (S(Sy)) = P(x y) by 2: P((Sx) - (Sy)) = (Sx) - (S(Sy))6: $\neg P((Sx) - (Sy)) = (Sx) - (S(Sy)) \lor (Sx) - (S(Sy)) = P(x - y)$

9:
$$\neg (Sx) - (S(Sy)) = P(x - y)$$
 by
3: $P(x - y) = x - (Sy)$
7: $\neg P(x - y) = x - (Sy) \lor \neg (Sx) - (S(Sy)) = P(x - y)$

10: QEA by 8: (Sx) - (S(Sy)) = P(x - y)9: $\neg (Sx) - (S(Sy)) = P(x - y)$