Proof of Theorem 18i

The theorem to be proved is
$\mathrm{S} x-\mathrm{S} y=x-y \quad \rightarrow \quad \mathrm{~S} x-\mathrm{SS} y=x-\mathrm{S} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[((\mathrm{S} x)-(\mathrm{S} y))=(x-y)] \quad \& \quad[\neg((\mathrm{~S} x)-(\mathrm{S}(\mathrm{S} y)))=(x-(\mathrm{S} y))]]$

Special cases of the hypothesis and previous results:

0: $\quad(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=x-(\mathrm{S} y) \quad$ from $\quad \mathrm{H}: x: y$
2: $\mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y)) \quad$ from $\quad \underline{17} ; \mathrm{S} x ; \mathrm{S} y$
3: $\mathrm{P}(x-y)=x-(\mathrm{S} y) \quad$ from $\quad 17 ; x ; y$

Equality substitutions:

4: $\neg(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad \vee \quad \neg \mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad \mathrm{P}(x-y)=$ $(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))$

5: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \quad \vee \quad(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=x-(\mathrm{S} y)$

Inferences:

6: $\neg \mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \quad$ by
$0:(\mathrm{S} x)-(\mathrm{S} y)=x-y$
4: $\neg(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad \vee \neg \mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=$ $\mathrm{P}(x-y)$

7: $\quad \neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \quad$ by
1: $\neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=x-(\mathrm{S} y)$
5: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \vee \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \vee(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=x-(\mathrm{S} y)$
8: $\quad(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \quad$ by
2: $\mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))$
6: $\neg \mathrm{P}((\mathrm{S} x)-(\mathrm{S} y))=(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y)$
9: $\quad \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y) \quad$ by
3: $\mathrm{P}(x-y)=x-(\mathrm{S} y)$
7: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y)$

10: $Q E A$ by
8: $(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y)$
9: $\neg(\mathrm{S} x)-(\mathrm{S}(\mathrm{S} y))=\mathrm{P}(x-y)$

