Proof of Theorem 189

The theorem to be proved is
$\mathrm{Q} \epsilon=1 \quad \& \quad \mathrm{R} \epsilon=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{Q} \epsilon)=(1) \quad \vee \quad \neg(\mathrm{R} \epsilon)=(0)]]$

Special cases of the hypothesis and previous results:

0: $\neg \mathrm{Q} \epsilon=1 \quad \vee \neg \mathrm{R} \epsilon=0 \quad$ from $\quad \mathrm{H}$
1: $\mathrm{S} 0=1 \quad$ from $\quad \underline{115}$
2: $\epsilon=0 \quad$ from 185
3: $1+0=1 \quad$ from $\quad \underline{12 ; 1}$
4: $0<$ S0 from $125 ; 0$
5: 1 is a power of two from $\underline{130}$
6: $\neg 1+0=\mathrm{S} 0 \vee \neg 1$ is a power of two $\vee \neg 0<1 \vee \mathrm{Q} 0=1 \quad$ from $\quad 171 ; 0 ; 1 ; 0$
7: $\neg 1+0=\mathrm{S} 0 \vee \neg 1$ is a power of two $\vee \neg 0<1 \vee \mathrm{R} 0=0 \quad$ from $\quad 171 ; 0 ; 1 ; 0$

Equality substitutions:

8: $\neg \mathrm{S} 0=1 \quad \vee \neg 0<\mathrm{S} 0 \quad \vee \quad 0<1$
9: $\neg \mathrm{S} 0=1 \quad \vee \quad 1+0=\mathrm{S} 0 \quad \vee \quad \neg 1+0=1$
10: $\neg \epsilon=0 \quad \vee \quad \mathrm{Q} \epsilon=1 \quad \vee \quad \neg \mathrm{Q} 0=1$
11: $\neg \epsilon=0 \quad \vee \quad \mathrm{R} \epsilon=0 \quad \vee \quad \neg \mathrm{R} 0=0$

Inferences:

12: $\neg 0<\mathrm{S} 0 \vee 0<1 \quad$ by
1: $\mathrm{S} 0=1$
8: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg 0<\mathrm{S} 0 \quad \vee \quad 0<1$
13: $1+0=\mathrm{S} 0 \quad \vee \neg 1+0=1 \quad$ by
1: $\mathrm{S} 0=1$
9: $\neg \mathrm{S} 0=1 \quad \vee \quad 1+0=\mathrm{S} 0 \quad \vee \quad \neg 1+0=1$

14: $\mathrm{Q} \epsilon=1 \quad \vee \neg \mathrm{Q} 0=1 \quad$ by
2: $\epsilon=0$
10: $\neg \epsilon=0 \quad \vee \quad \mathrm{Q} \epsilon=1 \quad \vee \quad \neg \mathrm{Q} 0=1$
15: $\mathrm{R} \epsilon=0 \vee \neg \mathrm{R} 0=0 \quad$ by
2: $\epsilon=0$
11: $\neg \epsilon=0 \quad \vee \quad \mathrm{R} \epsilon=0 \quad \vee \quad \neg \mathrm{R} 0=0$
16: $\quad 1+0=\mathrm{S} 0 \quad$ by
3: $1+0=1$
13: $1+0=\mathrm{S} 0 \quad \vee \neg 1+0=1$
17: $0<1 \quad$ by
4: $0<\mathrm{S} 0$
12: $\neg 0<\mathrm{S} 0 \vee 0<1$
18: $\neg 1+0=\mathrm{S} 0 \quad \vee \neg 0<1 \quad \vee \quad \mathrm{Q} 0=1 \quad$ by
$5: 1$ is a power of two
6: $\neg 1+0=\mathrm{S} 0 \quad \vee \neg 1$ is a power of two $\vee \neg 0<1 \quad \vee \quad \mathrm{Q} 0=1$
19: $\neg 1+0=\mathrm{S} 0 \quad \vee \neg 0<1 \quad \vee \mathrm{R} 0=0 \quad$ by
$5: 1$ is a power of two
7: $\neg 1+0=\mathrm{S} 0 \quad \vee \neg 1$ is a power of two $\quad \vee \neg 0<1 \quad \vee \mathrm{R} 0=0$
20: $\neg 0<1 \quad \vee \quad \mathrm{Q} 0=1 \quad$ by
16: $1+0=\mathrm{S} 0$
18: $\neg 1+0=\mathrm{S} 0 \quad \vee \quad \neg 0<1 \quad \vee \quad \mathrm{Q} 0=1$
21: $\neg 0<1 \quad \vee \quad \mathrm{R} 0=0 \quad$ by
16: $1+0=\mathrm{S} 0$
19: $\neg 1+0=\mathrm{S} 0 \quad \vee \quad \neg 0<1 \quad \vee \quad \mathrm{R} 0=0$
22: $\quad \mathrm{Q} 0=1 \quad$ by
17: $0<1$
20: $\neg 0<1 \quad \vee \quad \mathrm{Q} 0=1$
23: $\quad \mathrm{R} 0=0 \quad$ by
17: $0<1$
21: $\neg 0<1 \quad \vee \quad \mathrm{R} 0=0$
24: $\mathrm{Q} \epsilon=1 \quad$ by
22: $\mathrm{Q} 0=1$
14: $\mathrm{Q} \epsilon=1 \quad \vee \quad \neg \mathrm{Q} 0=1$

25: $R \epsilon=0 \quad$ by
23: $\mathrm{R} 0=0$
15: $\mathrm{R} \epsilon=0 \vee \neg \mathrm{R} 0=0$
26: $\neg \mathrm{R} \epsilon=0 \quad$ by
24: $\mathrm{Q} \epsilon=1$
$0: \neg \mathrm{Q} \epsilon=1 \quad \vee \neg \mathrm{R} \epsilon=0$
27: $Q E A$ by
25: $\mathrm{R} \epsilon=0$
26: $\neg \mathrm{R} \epsilon=0$

