Proof of Theorem 189

The theorem to be proved is

$$Q\epsilon = 1$$
 & $R\epsilon = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Q\epsilon) = (1) \lor \neg (R\epsilon) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg Q\epsilon = 1 \lor \neg R\epsilon = 0$$
 from H

1:
$$S0 = 1$$
 from 115

2:
$$\epsilon = 0$$
 from 185

3:
$$1 + 0 = 1$$
 from $12;1$

4:
$$0 < S0$$
 from $125;0$

6:
$$\neg 1 + 0 = S0 \lor \neg 1 \text{ is a power of two} \lor \neg 0 < 1 \lor Q0 = 1$$
 from 171;0;1;0

7:
$$\neg 1 + 0 = S0 \lor \neg 1$$
 is a power of two $\lor \neg 0 < 1 \lor R0 = 0$ from $171;0;1;0$

Equality substitutions:

8:
$$\neg S0 = 1 \lor \neg 0 < S0 \lor 0 < 1$$

9:
$$\neg S0 = 1 \lor 1 + 0 = S0 \lor \neg 1 + 0 = 1$$

10:
$$\neg \epsilon = 0 \quad \lor \quad Q_{\epsilon} = 1 \quad \lor \quad \neg Q_{\epsilon} = 1$$

11:
$$\neg \epsilon = 0 \quad \lor \quad \mathbf{R} = 0 \quad \lor \quad \neg \mathbf{R} = 0$$

Inferences:

12:
$$\neg 0 < S0 \lor 0 < 1$$
 by

1:
$$S0 = 1$$

8:
$$\neg S0 = 1 \lor \neg 0 < S0 \lor 0 < 1$$

13:
$$1 + 0 = S0 \quad \lor \quad \neg 1 + 0 = 1$$
 by

1:
$$S0 = 1$$

9:
$$\neg S0 = 1 \lor 1 + 0 = S0 \lor \neg 1 + 0 = 1$$

14:
$$Q\epsilon = 1 \quad \lor \quad \neg Q0 = 1$$
 by

2:
$$\epsilon = 0$$

10:
$$\neg \epsilon = 0 \quad \lor \quad Q\epsilon = 1 \quad \lor \quad \neg Q0 = 1$$

15:
$$R\epsilon = 0 \quad \lor \quad \neg R0 = 0$$
 by

2:
$$\epsilon = 0$$

11:
$$\neg \epsilon = 0 \quad \lor \quad R\epsilon = 0 \quad \lor \quad \neg R0 = 0$$

16:
$$1 + 0 = S0$$
 by

$$3: 1+0=1$$

13:
$$1 + 0 = S0 \quad \lor \quad \neg 1 + 0 = 1$$

17:
$$0 < 1$$
 by

4:
$$0 < S0$$

12:
$$\neg 0 < S0 \lor 0 < 1$$

18:
$$\neg 1 + 0 = S0 \lor \neg 0 < 1 \lor Q0 = 1$$
 by

5: 1 is a power of two

6:
$$\neg 1 + 0 = S0 \lor \neg 1$$
 is a power of two $\lor \neg 0 < 1 \lor Q0 = 1$

19:
$$\neg 1 + 0 = S0 \lor \neg 0 < 1 \lor R0 = 0$$
 by

5: 1 is a power of two

7:
$$\neg 1 + 0 = S0 \lor \neg 1$$
 is a power of two $\lor \neg 0 < 1 \lor R0 = 0$

20:
$$\neg 0 < 1 \lor Q0 = 1$$
 by

16:
$$1 + 0 = S0$$

18:
$$\neg 1 + 0 = S0 \lor \neg 0 < 1 \lor Q0 = 1$$

21:
$$\neg 0 < 1 \lor R0 = 0$$
 by

16:
$$1 + 0 = S0$$

19:
$$\neg 1 + 0 = \$0 \quad \lor \quad \neg 0 < 1 \quad \lor \quad R0 = 0$$

22:
$$Q0 = 1$$
 by

17:
$$0 < 1$$

20:
$$\neg 0 < 1 \lor Q0 = 1$$

23:
$$R0 = 0$$
 by

17:
$$0 < 1$$

21:
$$\neg 0 < 1 \lor R0 = 0$$

24:
$$Q\epsilon = 1$$
 by

22:
$$Q0 = 1$$

14:
$$Q\epsilon = 1 \quad \lor \quad \neg \ Q0 = 1$$

25:
$$R\epsilon = 0$$
 by

23:
$$R0 = 0$$

15:
$$R\epsilon = 0 \quad \lor \quad \neg R0 = 0$$

26:
$$\neg R\epsilon = 0$$
 by

24:
$$Q\epsilon = 1$$

0:
$$\neg Q\epsilon = 1 \lor \neg R\epsilon = 0$$

$$27$$
: QEA by

25:
$$R\epsilon = 0$$

26:
$$\neg R\epsilon = 0$$