## Proof of Theorem 183

The theorem to be proved is
$x \oplus(y \oplus z)=(x \oplus y) \oplus z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x \oplus(y \oplus z))=((x \oplus y) \oplus z)]]$

## Special cases of the hypothesis and previous results:

0: $\quad \neg x \oplus(y \oplus z)=(x \oplus y) \oplus z \quad$ from $\quad \mathrm{H}: x: y: z$
1: $\quad \mathrm{Q}(x \oplus(y \oplus z))=\mathrm{Q}((x \oplus y) \oplus z) \quad$ from $\quad 181 ; x ; y ; z$
2: $\quad \mathrm{R}(x \oplus(y \oplus z))=\mathrm{R}((x \oplus y) \oplus z) \quad$ from $\quad 182 ; x ; y ; z$
3: $\quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=\mathrm{S}(x \oplus(y \oplus z)) \quad$ from $\quad 166 ; x \oplus(y \oplus z)$
4: $\quad(\mathrm{Q}((x \oplus y) \oplus z))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ from $\quad \underline{166} ;(x \oplus y) \oplus z$
5: $\neg \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad \vee \quad x \oplus(y \oplus z)=(x \oplus y) \oplus z \quad$ from $\underline{4} ;(x \oplus y) \oplus z ; x \oplus(y \oplus z)$

## Equality substitutions:

$$
\begin{aligned}
& \text { 6: } \quad \neg \mathrm{Q}(x \oplus(y \oplus z))=\mathrm{Q}((x \oplus y) \oplus z) \vee(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \\
& \mathrm{V} \quad \neg(\mathrm{Q}((x \oplus y) \oplus z))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \\
& 7: \quad \neg \mathrm{R}(x \oplus(y \oplus z))=\mathrm{R}((x \oplus y) \oplus z) \vee \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=\mathrm{S}(x \oplus(y \oplus z)) \\
& \vee \quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \\
& 8: \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+ \\
& (\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \vee \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z)
\end{aligned}
$$

## Inferences:

9: $\quad \neg \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ by
0: $\neg x \oplus(y \oplus z)=(x \oplus y) \oplus z$
5: $\neg \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad \vee \quad x \oplus(y \oplus z)=(x \oplus y) \oplus z$
10: $\quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad \vee \quad \neg(\mathrm{Q}((x \oplus y) \oplus z))+(\mathrm{R}((x \oplus$ $y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ by

1: $\mathrm{Q}(x \oplus(y \oplus z))=\mathrm{Q}((x \oplus y) \oplus z)$

6: $\neg \mathrm{Q}(x \oplus(y \oplus z))=\mathrm{Q}((x \oplus y) \oplus z) \vee(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$ $\vee \neg(\mathrm{Q}((x \oplus y) \oplus z))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$

11: $\quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus$ $y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad$ by

2: $\mathrm{R}(x \oplus(y \oplus z))=\mathrm{R}((x \oplus y) \oplus z)$
7: $\neg \mathrm{R}(x \oplus(y \oplus z))=\mathrm{R}((x \oplus y) \oplus z) \quad \vee \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=$ $\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z))$

12: $\quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad$ by
3: $(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=\mathrm{S}(x \oplus(y \oplus z))$
11: $\neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}(x \oplus(y \oplus z)))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad(\mathrm{Q}(x \oplus(y \oplus z)))+$ $(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z))$

13: $\quad(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ by
4: $(\mathrm{Q}((x \oplus y) \oplus z))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$
10: $(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad \vee \quad \neg(\mathrm{Q}((x \oplus y) \oplus z))+$ $(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$

14: $\quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+$ $(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ by

9: $\neg \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$
8: $\neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+$ $(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad \vee \quad \mathrm{S}(x \oplus(y \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$

15: $\quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z) \quad$ by
12: $(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z))$
14: $\neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}(x \oplus(y \oplus z)) \quad \vee \quad \neg(\mathrm{Q}(x \oplus(y \oplus z)))+$ $(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$

16: $Q E A$ by
13: $(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$
15: $\neg(\mathrm{Q}(x \oplus(y \oplus z)))+(\mathrm{R}((x \oplus y) \oplus z))=\mathrm{S}((x \oplus y) \oplus z)$

