Proof of Theorem 180

The theorem to be proved is
$\mathrm{Q}(x \oplus y)=\mathrm{Q} x \cdot \mathrm{Q} y \quad \& \quad \mathrm{R}(x \oplus y)=\mathrm{R} x \cdot \mathrm{Q} y+\mathrm{R} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{Q}(x \oplus y))=((\mathrm{Q} x) \cdot(\mathrm{Q} y)) \quad \vee \quad \neg(\mathrm{R}(x \oplus y))=(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y) \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad$ from $\quad 179 ; x ; y$
2: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad 166 ; x$
3: $\mathrm{Q} x$ is a power of two from $166 ; x$
4: $\mathrm{Q} y$ is a power of two from $166 ; y$
5: $\quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y))=((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y) \quad$ from $\quad 106 ; \mathrm{Q} x ; \mathrm{R} x ; \mathrm{Q} y$
6: $\quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y) \quad$ from $72 ; \mathrm{Q} x) \cdot(\mathrm{Q} y ;((\mathrm{R} x) \cdot(\mathrm{Q} y)) ; \mathrm{R} y$

7: $\neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{Q} y$ is a power of two $\vee(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two from 177; Q $x ; \mathrm{Q} y$
8: $\quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y) \quad$ from $\quad \underline{176} ; x ; y$
9: $\quad \neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\quad \vee \quad \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad$ from 171; $x \oplus y ;(\mathrm{Q} x) \cdot(\mathrm{Q} y) ;(\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y$
10: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y) \quad \vee \quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$ from $\quad 171 ; x \oplus y ;(\mathrm{Q} x) \cdot(\mathrm{Q} y) ;(\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y$

Equality substitutions:

11: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad \vee$
$\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$
12: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y))=((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y) \quad \vee \quad \neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot$ $(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y) \quad \vee \quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+$ $(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$

13: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad \vee$
$((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \vee \neg(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$

Inferences:

14: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad$ by
1: $((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$
11: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad \vee$ $\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$

15: $\quad(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad$ by
2: $(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
14: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$
16: $\neg \mathrm{Q} y$ is a power of two $\vee(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two by
3: $\mathrm{Q} x$ is a power of two
7: $\neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{Q} y$ is a power of two $\vee(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two

17: $\quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two by
4: $\mathrm{Q} y$ is a power of two
16: $\neg \mathrm{Q} y$ is a power of two $\vee(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two
18: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y)$ $\vee((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad$ by

5: $((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y))=((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y)$
12: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y))=((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y) \quad \vee \quad \neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+$ $(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y) \quad \vee \quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot$ $(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$

19: $\quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad$ by
$6:((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y)$
18: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x) \cdot(\mathrm{Q} y))+((\mathrm{R} x) \cdot(\mathrm{Q} y)))+(\mathrm{R} y)$
$\vee((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
20: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\vee(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad$ by

8: $((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y)$
9: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$

21: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\vee((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y) \quad$ by

8: $((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y)$
10: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)<(\mathrm{Q} x) \cdot(\mathrm{Q} y) \quad \vee \quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$ 22: $\quad \neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad \vee$ $((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad$ by

15: $(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$
13: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
$\vee \quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=$ $\mathrm{S}(x \oplus y)$

23: $\quad \neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$ by

17: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two
20: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$

24: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$ by

17: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two
21: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)$ is a power of two $\vee \quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$

25: $\quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad$ by
19: $((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
22: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=(((\mathrm{Q} x)+(\mathrm{R} x)) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
$\vee \quad((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y)$
26: $\quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad$ by
25: $((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y)$
23: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$
27: $\quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y) \quad$ by
25: $((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y)$
24: $\neg((\mathrm{Q} x) \cdot(\mathrm{Q} y))+(((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=\mathrm{S}(x \oplus y) \quad \vee \quad((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=$ $\mathrm{R}(x \oplus y)$

28: $\quad \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y) \quad$ by
26: $(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y)$
$0: \neg(\mathrm{Q} x) \cdot(\mathrm{Q} y)=\mathrm{Q}(x \oplus y) \quad \vee \quad \neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$

29: $Q E A$ by
27: $((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$
28: $\neg((\mathrm{R} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{R}(x \oplus y)$

