Proof of Theorem 179

The theorem to be proved is
$\mathrm{S}(x \oplus y)=\mathrm{S} x \cdot \mathrm{Q} y+\mathrm{R} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{S}(x \oplus y))=(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))]]$

Special cases of the hypothesis and previous results:

$$
\begin{aligned}
& \text { 0: } \quad \neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y) \quad \text { from } \quad \mathrm{H} ; x ; y \\
& \text { 1: } \quad \mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y \quad \text { from } \quad \underline{172 ;} ; x ; y \\
& \text { 2: } \quad((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad \vee \quad \mathrm{~S}(\mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \\
& \text { from } \quad \underline{22} ;(\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y \\
& \text { 3: } \neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad \vee \quad(\mathrm{~S} x) \cdot(\mathrm{Q} y)=0 \quad \text { from } \quad \text { 15; } \mathrm{S} x) \cdot(\mathrm{Q} y ; \mathrm{R} y \\
& \text { 4: } \neg \mathrm{S} x=0 \quad \text { from } \quad \underline{3} ; x \\
& \text { 5: } \neg \mathrm{Q} y=0 \quad \text { from } \quad \underline{178} ; y \\
& \text { 6: } \quad \neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0 \quad \vee \quad \mathrm{~S} x=0 \quad \vee \quad \mathrm{Q} y=0 \quad \text { from } \quad 132 ; \mathrm{S} x ; \mathrm{Q} y
\end{aligned}
$$

Equality substitutions:

$$
\begin{aligned}
& \text { 7: } \quad \neg \mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y \quad \vee \neg \mathrm{~S}(\mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \\
& \vee \quad \mathrm{S}(x \oplus y)=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)
\end{aligned}
$$

Inferences:

$$
\text { 8: } \quad \neg \mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y \quad \vee \neg \mathrm{~S}(\mathrm{P}(((\mathrm{~S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)
$$by

0: $\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$
7: $\neg \mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y \quad \vee \quad \neg \mathrm{~S}(\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=$ $((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad \vee \quad((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=\mathrm{S}(x \oplus y)$

9: $\quad \neg \mathrm{S}(\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y) \quad$ by
1: $\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y$
8: $\neg \mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y))=x \oplus y \quad \vee \quad \neg \mathrm{~S}(\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=$ $((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$

10: $\quad \neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0 \quad \vee \quad \mathrm{Q} y=0 \quad$ by
4: $\neg \mathrm{S} x=0$
6: $\neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0 \quad \vee \quad \mathrm{~S} x=0 \quad \vee \quad \mathrm{Q} y=0$
11: $\neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0 \quad$ by
5: $\neg \mathrm{Q} y=0$
10: $\neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0 \quad \vee \quad \mathrm{Q} y=0$
12: $\quad((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad$ by
9: $\neg \mathrm{S}(\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
$2:((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad \vee \quad \mathrm{~S}(\mathrm{P}(((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)))=((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)$
13: $\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad$ by
11: $\neg(\mathrm{S} x) \cdot(\mathrm{Q} y)=0$
3: $\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0 \quad \vee \quad(\mathrm{~S} x) \cdot(\mathrm{Q} y)=0$
14: $Q E A$ by
12: $((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0$
13: $\neg((\mathrm{S} x) \cdot(\mathrm{Q} y))+(\mathrm{R} y)=0$

