Proof of Theorem 177

The theorem to be proved is
q_{1} is a power of two \& q_{2} is a power of two $\rightarrow q_{1} \cdot q_{2}$ is a power of two
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad\left[\left[\left(q_{1}\right)\right.\right.$ is a power of two $] \&\left[\left(q_{2}\right)\right.$ is a power of two $] \& \quad\left[\neg\left(q_{1} \cdot q_{2}\right)\right.$ is a power of two]]

Special cases of the hypothesis and previous results:

$0: \quad q_{1}$ is a power of two from $\mathrm{H}: q_{1}: q_{2}$
1: q_{2} is a power of two from $\mathrm{H}: q_{1}: q_{2}$
2: $\neg q_{1} \cdot q_{2}$ is a power of two from $\mathrm{H}: q_{1}: q_{2}$
3: $\neg q_{1}$ is a power of two $\vee 2 \uparrow x_{1}=q_{1} \quad$ from $\quad \underline{129}{ }^{->} ; q_{1}: x_{1}$
4: $\neg q_{2}$ is a power of two $\vee 2 \uparrow x_{2}=q_{2} \quad$ from $\quad \underline{129} \rightarrow ; q_{2}: x_{2}$
5: $\quad\left(2 \uparrow x_{1}\right) \cdot\left(2 \uparrow x_{2}\right)=2 \uparrow\left(x_{1}+x_{2}\right) \quad$ from $\quad \underline{136} ; 2 ; x_{1} ; x_{2}$
6: $2 \uparrow\left(x_{1}+x_{2}\right)$ is a power of two from $\underline{131 ;} x_{1}+x_{2}$

Equality substitutions:

$$
\begin{aligned}
& \text { 7: } \quad \neg 2 \uparrow x_{1}=q_{1} \quad \vee \quad \neg\left(2 \uparrow x_{1}\right) \cdot\left(2 \uparrow x_{2}\right)=2 \uparrow\left(x_{1}+x_{2}\right) \quad \vee\left(q_{1}\right) \cdot\left(2 \uparrow x_{2}\right)=2 \uparrow\left(x_{1}+x_{2}\right) \\
& \text { 8: } \neg 2 \uparrow x_{2}=q_{2} \quad \vee \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(q_{2}\right) \\
& \text { 9: } \quad \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad \vee \neg 2 \uparrow\left(x_{1}+x_{2}\right) \text { is a power of two } \vee q_{1} \cdot q_{2} \text { is a power } \\
& \text { of two }
\end{aligned}
$$

Inferences:

10: $\quad 2 \uparrow x_{1}=q_{1} \quad$ by
0: q_{1} is a power of two
3: $\neg q_{1}$ is a power of two $\vee 2 \uparrow x_{1}=q_{1}$
11: $\quad 2 \uparrow x_{2}=q_{2} \quad$ by
1: q_{2} is a power of two
4: $\neg q_{2}$ is a power of two $\vee 2 \uparrow x_{2}=q_{2}$

12: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad \vee \neg 2 \uparrow\left(x_{1}+x_{2}\right)$ is a power of two by
2: $\neg q_{1} \cdot q_{2}$ is a power of two
9: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad \vee \neg 2 \uparrow\left(x_{1}+x_{2}\right)$ is a power of two $\vee q_{1} \cdot q_{2}$ is a power of two

13: $\neg 2 \uparrow x_{1}=q_{1} \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad$ by
5: $\left(2 \uparrow x_{1}\right) \cdot\left(2 \uparrow x_{2}\right)=2 \uparrow\left(x_{1}+x_{2}\right)$
$7: \neg 2 \uparrow x_{1}=q_{1} \quad \vee \neg\left(2 \uparrow x_{1}\right) \cdot\left(2 \uparrow x_{2}\right)=2 \uparrow\left(x_{1}+x_{2}\right) \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right)$
14: $\quad \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad$ by
6: $2 \uparrow\left(x_{1}+x_{2}\right)$ is a power of two
12: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad \vee \neg 2 \uparrow\left(x_{1}+x_{2}\right)$ is a power of two
15: $\quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad$ by
10: $2 \uparrow x_{1}=q_{1}$
13: $\neg 2 \uparrow x_{1}=q_{1} \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right)$
16: $\quad \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2} \quad$ by
11: $2 \uparrow x_{2}=q_{2}$
8: $\neg 2 \uparrow x_{2}=q_{2} \quad \vee \quad \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2}$
17: $\quad \neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad$ by
14: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2}$
16: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right) \quad \vee \quad 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot q_{2}$
18: $Q E A$ by
15: $2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right)$
17: $\neg 2 \uparrow\left(x_{1}+x_{2}\right)=q_{1} \cdot\left(2 \uparrow x_{2}\right)$

