Proof of Theorem 171

The theorem to be proved is

$$Sx = q + r$$
 & q is a power of two & $r < q \rightarrow q = Qx$ & $r = Rx$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Sx) = (q+r)]$$
 & $[(q)$ is a power of two] & $[(r) < (q)]$ & $[\neg (q) = (Qx) \lor \neg (r) = (Rx)]]$

Special cases of the hypothesis and previous results:

0:
$$q + r = Sx$$
 from H: $x:q:r$

1:
$$q$$
 is a power of two from $H:x:q:r$

2:
$$r < q$$
 from H: $x:q:r$

3:
$$\neg Qx = q \lor \neg Rx = r$$
 from H:x:q:r

4:
$$q \le q + r$$
 from $71;q;r$

5:
$$2 \cdot q = q + q$$
 from 118; q

6:
$$r + q = q + r$$
 from 98; q ; r

7:
$$\neg r < q \lor r + q < q + q$$
 from $\underline{170}; r; q; q$

8:
$$\neg q$$
 is a power of two $\lor \neg q \le Sx \lor \neg Sx < 2 \cdot q \lor Qx = q$ from $159;q;x$

9:
$$\neg (Qx) + (Rx) = (Qx) + r \lor Rx = r$$
 from $\underline{120}; Qx; r; Rx$

10:
$$(Qx) + (Rx) = Sx$$
 from 161; x

Equality substitutions:

11:
$$\neg q + r = Sx \lor \neg q \le q + r \lor q \le Sx$$

12:
$$\neg q + r = Sx \lor \neg r + q = q + r \lor r + q = Sx$$

13:
$$\neg Qx = q \lor (Qx) + r = Sx \lor \neg (q) + r = Sx$$

14:
$$\neg 2 \cdot q = q + q \quad \lor \quad Sx < \frac{2 \cdot q}{} \quad \lor \quad \neg Sx < \frac{q + q}{}$$

15:
$$\neg (Qx) + (Rx) = Sx \lor (Qx) + (Rx) = (Qx) + r \lor \neg Sx = (Qx) + r$$

16:
$$\neg r + q = Sx \lor \neg r + q < q + q \lor Sx < q + q$$

Inferences:

17:
$$\neg q \le q + r \quad \lor \quad q \le Sx$$
 by

0:
$$q + r = Sx$$

11:
$$\neg q + r = Sx \lor \neg q \le q + r \lor q \le Sx$$

18:
$$\neg r + q = q + r \quad \lor \quad r + q = Sx$$
 by

0:
$$q + r = Sx$$

12:
$$\neg q + r = Sx \quad \lor \quad \neg r + q = q + r \quad \lor \quad r + q = Sx$$

19:
$$\neg Qx = q \lor (Qx) + r = Sx$$
 by

0:
$$q + r = Sx$$

13:
$$\neg Qx = q \lor (Qx) + r = Sx \lor \neg q + r = Sx$$

20:
$$\neg q \leq Sx \lor \neg Sx < 2 \cdot q \lor Qx = q$$
 by

1: q is a power of two

8:
$$\neg q$$
 is a power of two $\lor \neg q \le Sx \lor \neg Sx < 2 \cdot q \lor Qx = q$

21:
$$r + q < q + q$$
 by

2:
$$r < q$$

7:
$$\neg r < q \quad \lor \quad r + q < q + q$$

22:
$$q \leq Sx$$
 by

4:
$$q \leq q + r$$

17:
$$\neg q \leq q + r \quad \lor \quad q \leq Sx$$

23:
$$Sx < 2 \cdot q \quad \lor \quad \neg Sx < q + q$$
 by

5:
$$2 \cdot q = q + q$$

14:
$$\neg 2 \cdot q = q + q \quad \lor \quad Sx < 2 \cdot q \quad \lor \quad \neg Sx < q + q$$

24:
$$r + q = Sx$$
 by

6:
$$r + q = q + r$$

18:
$$\neg r + q = q + r \quad \lor \quad r + q = Sx$$

25:
$$(Qx) + (Rx) = (Qx) + r \quad \lor \quad \neg (Qx) + r = Sx$$
 by

10:
$$(Qx) + (Rx) = Sx$$

15:
$$\neg (Qx) + (Rx) = Sx \lor (Qx) + (Rx) = (Qx) + r \lor \neg (Qx) + r = Sx$$

26:
$$\neg r + q = Sx \lor Sx < q + q$$
 by

21:
$$r + q < q + q$$

16:
$$\neg r + q = Sx \quad \lor \quad \neg r + q < q + q \quad \lor \quad Sx < q + q$$

27:
$$\neg Sx < 2 \cdot q \quad \lor \quad Qx = q$$
 by

22:
$$q \leq Sx$$

20:
$$\neg q \leq Sx \lor \neg Sx < 2 \cdot q \lor Qx = q$$

28:
$$Sx < q + q$$
 by

24:
$$r + q = Sx$$

26:
$$\neg r + q = Sx \lor Sx < q + q$$

29:
$$Sx < 2 \cdot q$$
 by

28:
$$Sx < q + q$$

23:
$$Sx < 2 \cdot q \quad \lor \quad \neg Sx < q + q$$

30:
$$Qx = q$$
 by

29:
$$Sx < 2 \cdot q$$

27:
$$\neg Sx < 2 \cdot q \quad \lor \quad Qx = q$$

31:
$$\neg Rx = r$$
 by

30:
$$Qx = q$$

3:
$$\neg Qx = q \lor \neg Rx = r$$

32:
$$(Qx) + r = Sx$$
 by

30:
$$Qx = q$$

19:
$$\neg \mathbf{Q}x = q \quad \lor \quad (\mathbf{Q}x) + r = \mathbf{S}x$$

33:
$$\neg (Qx) + (Rx) = (Qx) + r$$
 by

31:
$$\neg Rx = r$$

9:
$$\neg (Qx) + (Rx) = (Qx) + r \lor Rx = r$$

34:
$$(Qx) + (Rx) = (Qx) + r$$
 by

32:
$$(Qx) + r = Sx$$

25:
$$(Qx) + (Rx) = (Qx) + r \quad \lor \quad \neg (Qx) + r = Sx$$

$$35$$
: QEA by

33:
$$\neg (Qx) + (Rx) = (Qx) + r$$

34:
$$(Qx) + (Rx) = (Qx) + r$$