Proof of Theorem 171

The theorem to be proved is
$\mathrm{S} x=q+r \quad \& \quad q$ is a power of two $\quad \& \quad r<q \quad \rightarrow \quad q=\mathrm{Q} x \quad \& \quad r=\mathrm{R} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\mathrm{S} x)=(q+r)] \quad \& \quad[(q)$ is a power of two $] \quad \& \quad[(r)<(q)] \quad \& \quad[\neg(q)=(\mathrm{Q} x)$ $\vee \neg(r)=(\mathrm{R} x)]]$

Special cases of the hypothesis and previous results:

0: $\quad q+r=\mathrm{S} x \quad$ from $\quad \mathrm{H}: x: q: r$
1: q is a power of two from $\mathrm{H}: x: q: r$
2: $\quad r<q \quad$ from $\mathrm{H}: x: q: r$
3: $\neg \mathrm{Q} x=q \quad \vee \quad \neg \mathrm{R} x=r \quad$ from $\quad \mathrm{H}: x: q: r$
4: $\quad q \leq q+r \quad$ from $\quad \underline{71} ; q ; r$
5: $\quad 2 \cdot q=q+q \quad$ from $\quad 118 ; q$
6: $\quad r+q=q+r \quad$ from $\quad \underline{98} ; q ; r$
7: $\neg r<q \vee \quad r+q<q+q \quad$ from $\quad \underline{170 ;} ; r ; q ; q$
8: $\neg q$ is a power of two $\vee \neg q \leq \mathrm{S} x \quad \vee \neg \mathrm{~S} x<2 \cdot q \vee \mathrm{Q} x=q \quad$ from $\quad \underline{159 ; q ; x}$
9: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \mathrm{R} x=r \quad$ from $\quad 120 ; \mathrm{Q} x ; r ; \mathrm{R} x$
10: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad 161 ; x$

Equality substitutions:

11: $\neg q+r=\mathrm{S} x \quad \vee \neg q \leq q+r \quad \vee \quad q \leq \mathrm{S} x$
12: $\neg q+r=\mathrm{S} x \quad \vee \quad \neg r+q=q+r \quad \vee \quad r+q=\mathrm{S} x$
13: $\neg \mathrm{Q} x=q \quad \vee \quad(\mathrm{Q} x)+r=\mathrm{S} x \quad \vee \quad \neg(q)+r=\mathrm{S} x$
14: $\quad \neg 2 \cdot q=q+q \quad \vee \quad \mathrm{~S} x<2 \cdot q \quad \vee \quad \neg \mathrm{~S} x<q+q$
15: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \neg \mathrm{~S} x=(\mathrm{Q} x)+r$
16: $\neg r+q=\mathrm{S} x \quad \vee \quad \neg r+q<q+q \quad \vee \quad \mathrm{~S} x<q+q$

Inferences:

17: $\neg q \leq q+r \vee q \leq \mathrm{S} x \quad$ by
0: $q+r=\mathrm{S} x$
11: $\neg q+r=\mathrm{S} x \quad \vee \neg q \leq q+r \vee q \leq \mathrm{S} x$
18: $\neg r+q=q+r \quad \vee \quad r+q=\mathrm{S} x \quad$ by
0: $q+r=\mathrm{S} x$
12: $\neg q+r=\mathrm{S} x \quad \vee \quad \neg r+q=q+r \quad \vee \quad r+q=\mathrm{S} x$
19: $\neg \mathrm{Q} x=q \vee(\mathrm{Q} x)+r=\mathrm{S} x \quad$ by
0: $q+r=\mathbf{S} x$
13: $\neg \mathrm{Q} x=q \quad \vee \quad(\mathrm{Q} x)+r=\mathrm{S} x \quad \vee \quad \neg q+r=\mathrm{S} x$
20: $\neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad \vee \quad \mathrm{Q} x=q \quad$ by
1: q is a power of two
8: $\neg q$ is a power of two $\vee \neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad \vee \quad \mathrm{Q} x=q$
21: $\quad r+q<q+q \quad$ by
2: $r<q$
7: $\neg r<q \quad \vee \quad r+q<q+q$
22: $q \leq \mathrm{S} x \quad$ by
4: $q \leq q+r$
17: $\neg q \leq q+r \vee \quad q \leq \mathrm{S} x$
23: $\mathrm{S} x<2 \cdot q \vee \quad \neg \mathrm{~S} x<q+q \quad$ by
5: $2 \cdot q=q+q$
14: $\neg 2 \cdot q=q+q \quad \vee \quad \mathrm{~S} x<2 \cdot q \quad \vee \quad \neg \mathrm{~S} x<q+q$
24: $r+q=\mathrm{S} x \quad$ by
6: $r+q=q+r$
18: $\neg r+q=q+r \quad \vee \quad r+q=\mathbf{S} x$
25: $(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \neg(\mathrm{Q} x)+r=\mathrm{S} x \quad$ by
10: $(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
15: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \neg(\mathrm{Q} x)+r=\mathrm{S} x$
26: $\neg r+q=\mathrm{S} x \vee \mathrm{~S} x<q+q \quad$ by
21: $r+q<q+q$
16: $\neg r+q=\mathrm{S} x \quad \vee \quad \neg r+q<q+q \quad \vee \quad \mathrm{~S} x<q+q$
27: $\neg \mathrm{S} x<2 \cdot q \vee \quad \mathrm{Q} x=q \quad$ by
22: $q \leq \mathrm{S} x$
20: $\neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad \vee \quad \mathrm{Q} x=q$

28: $\quad \mathrm{S} x<q+q \quad$ by
24: $r+q=\mathrm{S} x$
26: $\neg r+q=\mathrm{S} x \quad \vee \quad \mathrm{~S} x<q+q$
29: $\quad \mathrm{S} x<2 \cdot q \quad$ by
28: $\mathrm{S} x<q+q$
23: $\mathrm{S} x<2 \cdot q \vee \neg \mathrm{~S} x<q+q$
30: $\quad \mathrm{Q} x=q \quad$ by
29: $\mathrm{S} x<2 \cdot q$
27: $\neg \mathrm{S} x<2 \cdot q \quad \vee \quad \mathrm{Q} x=q$
31: $\quad \neg \mathrm{R} x=r \quad$ by
30: $\mathrm{Q} x=q$
3: $\neg \mathrm{Q} x=q \quad \vee \quad \neg \mathrm{R} x=r$
32: $\quad(\mathrm{Q} x)+r=\mathrm{S} x \quad$ by
30: $\mathrm{Q} x=q$
19: $\neg \mathrm{Q} x=q \quad \vee \quad(\mathrm{Q} x)+r=\mathrm{S} x$
33: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad$ by
31: $\neg \mathrm{R} x=r$
9: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \mathrm{R} x=r$
34: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad$ by
32: $(\mathrm{Q} x)+r=\mathrm{S} x$
25: $(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r \quad \vee \quad \neg(\mathrm{Q} x)+r=\mathrm{S} x$
35: $Q E A$ by
33: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r$
34: $(\mathrm{Q} x)+(\mathrm{R} x)=(\mathrm{Q} x)+r$

