Proof of Theorem 166

 \star

The theorem to be proved is

Sx = Qx + Rx & Qx is a power of two & Rx < Qx

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\mathbf{S}x) = ((\mathbf{Q}x) + (\mathbf{R}x)) \lor \neg (\mathbf{Q}x) \text{ is a power of two} \lor \neg (\mathbf{R}x) < (\mathbf{Q}x)]]$

Special cases of the hypothesis and previous results:

0: $\neg (Qx) + (Rx) = Sx \lor \neg Qx$ is a power of two $\lor \neg Rx < Qx$ from H:x

1: $(\mathbf{Q}x) + (\mathbf{R}x) = \mathbf{S}x$ from <u>161</u>;x

- 2: Qx is a power of two from 158;x
- 3: $\mathbf{R}x < \mathbf{Q}x$ from <u>165</u>;x

Inferences:

4:
$$\neg Qx$$
 is a power of two $\lor \neg Rx < Qx$ by
1: $(Qx) + (Rx) = Sx$
0: $\neg (Qx) + (Rx) = Sx \lor \neg Qx$ is a power of two $\lor \neg Rx < Qx$

5:
$$\neg \operatorname{R} x < \operatorname{Q} x$$
 by
2: $\operatorname{Q} x$ is a power of two
4: $\neg \operatorname{Q} x$ is a power of two $\lor \neg \operatorname{R} x < \operatorname{Q} x$

6: QEA by 3: $\mathbf{R}x < \mathbf{Q}x$

5: $\neg \mathbf{R}x < \mathbf{Q}x$