Proof of Theorem 166

The theorem to be proved is
$\mathrm{S} x=\mathrm{Q} x+\mathrm{R} x \quad \& \quad \mathrm{Q} x$ is a power of two $\quad \& \quad \mathrm{R} x<\mathrm{Q} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{S} x)=((\mathrm{Q} x)+(\mathrm{R} x)) \quad \vee \quad \neg(\mathrm{Q} x)$ is a power of two $\quad \vee \quad \neg(\mathrm{R} x)<(\mathrm{Q} x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad \neg \mathrm{Q} x$ is a power of two $\quad \vee \neg \mathrm{R} x<\mathrm{Q} x \quad$ from $\quad \mathrm{H}: x$
1: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad \underline{161 ;} ;$
2: $\mathrm{Q} x$ is a power of two from $158 ; x$
3: $\quad \mathrm{R} x<\mathrm{Q} x \quad$ from $\quad 165 ; x$

Inferences:

4: $\neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{R} x<\mathrm{Q} x \quad$ by
1: $(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
0: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \neg \mathrm{Q} x$ is a power of two $\quad \vee \neg \mathrm{R} x<\mathrm{Q} x$
5: $\neg \mathrm{R} x<\mathrm{Q} x \quad$ by
2: $\mathrm{Q} x$ is a power of two
4: $\neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{R} x<\mathrm{Q} x$
6: $Q E A$ by
3: $\mathrm{R} x<\mathrm{Q} x$
5: $\neg \mathrm{R} x<\mathrm{Q} x$

