Proof of Theorem 163

The theorem to be proved is
$x+y=z \quad \& \quad y \neq 0 \quad \rightarrow \quad x<z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x+y)=(z)] \quad \& \quad[\neg(y)=(0)] \quad \& \quad[\neg(x)<(z)]]$

Special cases of the hypothesis and previous results:

$0: \quad x+y=z \quad$ from $\mathrm{H}: x: y: z$
1: $\neg 0=y \quad$ from $\mathrm{H}: x: y: z$
2: $\neg x<z$ from $\mathrm{H}: x: y: z$
3: $x<z \quad \vee \neg x \leq z \quad \vee \quad z=x \quad$ from $\quad \underline{56}^{\leftarrow} ; x ; z$
4: $x \leq x+y \quad$ from $\quad \underline{71} ; x ; y$
5: $\quad x+0=x \quad$ from $12 ; x$
6: $\quad \neg x+0=x+y \quad \vee \quad 0=y \quad$ from $\quad \underline{120 ;} ; x ; y ; 0$

Equality substitutions:

7: $\neg x+y=z \quad \vee \quad \neg x \leq x+y \quad \vee \quad x \leq z$
8: $\quad \neg x+y=z \quad \vee \quad x+0=x+y \quad \vee \quad \neg x+0=z$
9: $\neg z=x \quad \vee \quad x+0=z \quad \vee \quad \neg x+0=x$

Inferences:

10: $\neg x \leq x+y \quad \vee \quad x \leq z \quad$ by
0: $x+y=z$
7: $\neg x+y=z \quad \vee \quad \neg x \leq x+y \quad \vee \quad x \leq z$
11: $x+0=x+y \quad \vee \neg x+0=z \quad$ by
0: $x+y=z$
8: $\neg x+y=z \quad \vee \quad x+0=x+y \quad \vee \quad \neg x+0=z$
12: $\neg x+0=x+y \quad$ by
1: $\neg 0=y$
6: $\neg x+0=x+y \quad \vee \quad 0=y$

13: $\neg x \leq z \quad \vee \quad z=x \quad$ by
2: $\neg x<z$
3: $x<z \vee \neg x \leq z \quad \vee \quad z=x$
14: $x \leq z \quad$ by
4: $x \leq x+y$
10: $\neg x \leq x+y \quad \vee \quad x \leq z$
15: $\neg z=x \quad \vee \quad x+0=z \quad$ by
5: $x+0=x$
9: $\neg z=x \quad \vee \quad x+0=z \quad \vee \quad \neg x+0=x$
16: $\quad \neg x+0=z \quad$ by
12: $\neg x+0=x+y$
11: $x+0=x+y \vee \neg x+0=z$
17: $z=x \quad$ by
14: $x \leq z$
13: $\neg x \leq z \quad \vee \quad z=x$
18: $\neg z=x \quad$ by
16: $\neg x+0=z$
15: $\neg z=x \quad \vee \quad x+0=z$
19: $Q E A$ by
17: $z=x$
18: $\neg z=x$

