Proof of Theorem 163

The theorem to be proved is

$$x + y = z$$
 & $y \neq 0$ \rightarrow $x < z$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x+y)=(z)] \& [\neg (y)=(0)] \& [\neg (x)<(z)]]$$

Special cases of the hypothesis and previous results:

0:
$$x + y = z$$
 from H: $x:y:z$

1:
$$\neg 0 = y$$
 from H: $x:y:z$

2:
$$\neg x < z$$
 from H: $x:y:z$

3:
$$x < z \quad \lor \quad \neg \ x \le z \quad \lor \quad z = x$$
 from $\underline{56}^{\leftarrow}; x; z$

4:
$$x \le x + y$$
 from $71;x;y$

5:
$$x + 0 = x$$
 from 12; x

6:
$$\neg x + 0 = x + y \quad \lor \quad 0 = y$$
 from 120; $x;y;0$

Equality substitutions:

7:
$$\neg x + y = z \quad \lor \quad \neg x \leq x + y \quad \lor \quad x \leq z$$

8:
$$\neg x + y = z \quad \lor \quad x + 0 = x + y \quad \lor \quad \neg x + 0 = z$$

9:
$$\neg z = x \lor x + 0 = z \lor \neg x + 0 = x$$

Inferences:

10:
$$\neg x \le x + y \quad \lor \quad x \le z$$
 by

0:
$$x + y = z$$

7:
$$\neg x + y = z \quad \lor \quad \neg x \le x + y \quad \lor \quad x \le z$$

11:
$$x + 0 = x + y \quad \forall \quad \neg x + 0 = z$$
 by

0:
$$x + y = z$$

8:
$$\neg x + y = z \quad \lor \quad x + 0 = x + y \quad \lor \quad \neg x + 0 = z$$

12:
$$\neg x + 0 = x + y$$
 by

1:
$$\neg 0 = y$$

6:
$$\neg x + 0 = x + y \lor 0 = y$$

13:
$$\neg x \le z \lor z = x$$
 by

$$2: \neg x < z$$

$$3: \ \underline{x} < \underline{z} \quad \lor \quad \lnot \ x \leq z \quad \lor \quad z = x$$

14:
$$x \le z$$
 by

4:
$$x \le x + y$$

10:
$$\neg x \le x + y \quad \lor \quad x \le z$$

15:
$$\neg z = x \lor x + 0 = z$$
 by

5:
$$x + 0 = x$$

9:
$$\neg z = x \lor x + 0 = z \lor \neg x + 0 = x$$

16:
$$\neg x + 0 = z$$
 by

12:
$$\neg x + 0 = x + y$$

11:
$$x + 0 = x + y \quad \lor \quad \neg x + 0 = z$$

17:
$$z = x$$
 by

14:
$$x \le z$$

13:
$$\neg x \le z \quad \lor \quad z = x$$

18:
$$\neg z = x$$
 by

16:
$$\neg x + 0 = z$$

15:
$$\neg z = x \lor x + 0 = z$$

19:
$$QEA$$
 by

17:
$$z = x$$

18:
$$\neg z = x$$