Proof of Theorem 161

The theorem to be proved is

$$Sx = Qx + Rx$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Sx) = ((Qx) + (Rx))]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg (Qx) + (Rx) = Sx$$
 from H:x

1:
$$Qx \leq Sx$$
 from $158;x$

2:
$$(Sx) - (Qx) = Rx$$
 from 160; x

3:
$$\neg Qx \le Sx \lor (Qx) + ((Sx) - (Qx)) = Sx$$
 from 68;Qx;Sx

Equality substitutions:

4:
$$\neg (Sx) - (Qx) = Rx \lor \neg (Qx) + ((Sx) - (Qx)) = Sx \lor (Qx) + (Rx) = Sx$$

Inferences:

5:
$$\neg (Sx) - (Qx) = Rx \lor \neg (Qx) + ((Sx) - (Qx)) = Sx$$
 by

$$0: \neg (Qx) + (Rx) = Sx$$

4:
$$\neg (Sx) - (Qx) = Rx \lor \neg (Qx) + ((Sx) - (Qx)) = Sx \lor (Qx) + (Rx) = Sx$$

6:
$$(Qx) + ((Sx) - (Qx)) = Sx$$
 by

1:
$$Qx \leq Sx$$

3:
$$\neg Qx \le Sx \lor (Qx) + ((Sx) - (Qx)) = Sx$$

7:
$$\neg (Qx) + ((Sx) - (Qx)) = Sx$$
 by

2:
$$(Sx) - (Qx) = Rx$$

5:
$$\neg (Sx) - (Qx) = Rx \lor \neg (Qx) + ((Sx) - (Qx)) = Sx$$

8:
$$QEA$$
 by

6:
$$(Qx) + ((Sx) - (Qx)) = Sx$$

7:
$$\neg (Qx) + ((Sx) - (Qx)) = Sx$$