Proof of Theorem 161

The theorem to be proved is
$\mathrm{S} x=\mathrm{Q} x+\mathrm{R} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{S} x)=((\mathrm{Q} x)+(\mathrm{R} x))]]$

Special cases of the hypothesis and previous results:

0: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad \mathrm{H}: x$
1: $\mathrm{Q} x \leq \mathrm{S} x \quad$ from $158 ; x$
2: $\quad(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x \quad$ from $\quad 160 ; x$
3: $\neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee \quad(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad$ from $\quad 68 ; \mathrm{Q} x ; \mathrm{S} x$

Equality substitutions:

4: $\neg(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x \quad \vee \quad \neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$

Inferences:

5: $\quad \neg(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x \quad \vee \quad \neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad$ by
0: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
4: $\neg(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x \quad \vee \quad \neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad \vee \quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
6: $\quad(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad$ by
1: $\mathrm{Q} x \leq \mathrm{S} x$
3: $\neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x$
7: $\quad \neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x \quad$ by
2: $(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x$
5: $\neg(\mathrm{S} x)-(\mathrm{Q} x)=\mathrm{R} x \quad \vee \quad \neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x$
8: $Q E A$ by
6: $(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x$
7: $\neg(\mathrm{Q} x)+((\mathrm{S} x)-(\mathrm{Q} x))=\mathrm{S} x$

