Proof of Theorem 15i

The theorem to be proved is
$[x+y=0 \quad \rightarrow \quad x=0 \quad \& \quad y=0] \quad \rightarrow \quad[x+\mathrm{S} y=0 \quad \rightarrow \quad x=0 \quad \& \quad \mathrm{~S} y=0]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x+y)=(0) \quad \vee \quad(x)=(0)] \quad \& \quad[\neg(x+y)=(0) \quad \vee \quad(y)=(0)]$ $\& \quad[(x+(\mathrm{S} y))=(0)] \quad \& \quad[\neg(x)=(0) \quad \vee \quad \neg(\mathrm{S} y)=(0)]]$

Special cases of the hypothesis and previous results:

$0: \quad x+(\mathrm{S} y)=0 \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad$ from $\quad \underline{12} ; x ; y$
2: $\neg \mathrm{S}(x+y)=0 \quad$ from $\quad \underline{3} ; x+y$

Equality substitutions:

3: $\neg x+(\mathrm{S} y)=0 \quad \vee \neg \mathrm{~S}(x+y)=x+(\mathrm{S} y) \vee \mathrm{S}(x+y)=0$

Inferences:

4: $\neg \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad \vee \quad \mathrm{S}(x+y)=0 \quad$ by
$0: x+(\mathrm{S} y)=0$
3: $\neg x+(\mathrm{S} y)=0 \quad \vee \quad \neg \mathrm{~S}(x+y)=x+(\mathrm{S} y) \quad \vee \quad \mathrm{S}(x+y)=0$
5: $\quad \mathrm{S}(x+y)=0 \quad$ by
1: $\mathrm{S}(x+y)=x+(\mathrm{S} y)$
4: $\neg \mathrm{S}(x+y)=x+(\mathrm{S} y) \quad \vee \quad \mathrm{S}(x+y)=0$
6: $Q E A$ by
2: $\neg \mathrm{S}(x+y)=0$
5: $\mathrm{S}(x+y)=0$

