Proof of Theorem 15b

The theorem to be proved is
$x+0=0 \quad \rightarrow \quad x=0 \quad \& \quad 0=0$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(x+0)=(0)] \quad \& \quad[\neg(x)=(0) \quad \vee \quad \neg(0)=(0)]]$

Special cases of the hypothesis and previous results:

$0: \quad x+0=0 \quad$ from $\mathrm{H}: x$
1: $\neg 0=x \quad \vee \quad \neg 0=0 \quad$ from $\quad \mathrm{H}: x$
2: $x+0=x \quad$ from $\underline{12 ;} x$

Equality substitutions:

3: $\neg x+0=0 \quad \vee \quad \neg x+0=x \quad \vee \quad 0=x$
4: $\neg 0=x \quad \vee \quad 0=0 \quad \vee \quad \neg x=x$

Inferences:

5: $\quad \neg x+0=x \quad \vee \quad 0=x \quad$ by
$0: x+0=0$
$3: \neg x+0=0 \quad \vee \quad \neg x+0=x \quad \vee \quad 0=x$
6: $\quad 0=x \quad$ by
2: $x+0=x$
5: $\neg x+0=x \quad \vee \quad 0=x$
7: $\neg 0=0 \quad$ by
6: $0=x$
1: $\neg 0=x \quad \vee \quad \neg 0=0$
8: $0=0 \quad$ by
6: $0=x$
4: $\neg 0=x \quad \vee \quad 0=0$
9: $Q E A \quad$ by
7: $\neg 0=0$
8: $0=0$

