Proof of Theorem 159

The theorem to be proved is
q is a power of two \& $q \leq \mathrm{S} x \quad \& \quad \mathrm{~S} x<2 \cdot q \quad \rightarrow \quad q=\mathrm{Q} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
$(\mathrm{H}) \quad[[(q)$ is a power of two $] \quad \& \quad[(q) \leq(\mathrm{S} x)] \quad \& \quad[(\mathrm{~S} x)<(2 \cdot q)] \quad \& \quad[\neg(q)=(\mathrm{Q} x)]]$

Special cases of the hypothesis and previous results:

0: q is a power of two from $\mathrm{H}: q: x$
1: $q \leq \mathrm{S} x$ from $\mathrm{H}: q: x$
2: $\quad \mathrm{S} x<2 \cdot q \quad$ from $\quad \mathrm{H}: q: x$
3: $\neg \mathrm{Q} x=q \quad$ from $\quad \mathrm{H}: q: x$
4: $\mathrm{p}_{150}((q x)) \quad \vee \neg q$ is a power of two $\quad \vee \neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad$ from $\underline{150}{ }^{<} ; q ; x$

5: $\mathrm{Q} x=q \quad \vee \quad \neg \mathrm{p}_{150}((q x)) \quad$ from $\quad \underline{157}^{\leftarrow} ; x ; q$

Inferences:

6: $\quad \mathrm{p}_{150}((q x)) \vee \neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad$ by
0: q is a power of two
4: $\mathrm{p}_{150}((q x)) \vee \neg q$ is a power of two $\vee \neg q \leq \mathrm{S} x \quad \vee \neg \mathrm{~S} x<2 \cdot q$
7: $\mathrm{p}_{150}((q x)) \vee \neg \mathrm{S} x<2 \cdot q \quad$ by
1: $q \leq \mathrm{S} x$
6: $\mathrm{p}_{150}((q x)) \vee \neg q \leq \mathrm{S} x \quad \vee \neg \mathrm{~S} x<2 \cdot q$
8: $\mathrm{p}_{150}((q x)) \quad$ by
2: $\mathrm{S} x<2 \cdot q$
7: $\mathrm{p}_{150}((q x)) \quad \vee \quad \neg \mathrm{S} x<2 \cdot q$
9: $\neg \mathrm{p}_{150}((q x)) \quad$ by
3: $\neg \mathrm{Q} x=q$
5: $\mathrm{Q} x=q \quad \vee \quad \neg \mathrm{p}_{150}((q x))$
10: $Q E A$ by
8: $\mathrm{p}_{150}((q x))$
9: $\neg \mathrm{p}_{150}((q x))$

