Proof of Theorem 158

The theorem to be proved is

Qx is a power of two & $Qx \le Sx$ & $Sx < 2 \cdot Qx$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (Qx) \text{ is a power of two } \lor \neg (Qx) \le (Sx) \lor \neg (Sx) < (2 \cdot (Qx))]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg Qx$$
 is a power of two $\lor \neg Qx \le Sx \lor \neg Sx < 2 \cdot (Qx)$ from H:x

1:
$$\neg Qx = Qx \lor p_{150}((Qxx))$$
 from $\underline{157}^{\Rightarrow};x;Qx$

2:
$$\neg p_{150}((Qxx)) \lor Qx$$
 is a power of two from $\underline{150} \Rightarrow ; Qx; x$

3:
$$\neg p_{150}((Qxx)) \lor Qx \le Sx$$
 from $150 \Rightarrow ;Qx;x$

4:
$$\neg p_{150}(Qxx)$$
 $\lor Sx < 2 \cdot Qx$ from $\underline{150} \Rightarrow Qx; x$

5:
$$Qx = Qx$$
 from 5; Qx

Inferences:

6:
$$p_{150}((Qxx))$$
 by

$$5: \mathbf{Q}x = \mathbf{Q}x$$

1:
$$\neg \mathbf{Q}x = \mathbf{Q}x \lor \mathbf{p}_{150}((\mathbf{Q}xx))$$

7:
$$Qx$$
 is a power of two by

6:
$$p_{150}((Qxx))$$

2:
$$\neg p_{150}((Qxx)) \lor Qx$$
 is a power of two

8:
$$Qx \leq Sx$$
 by

6:
$$p_{150}((Qxx))$$

3:
$$\neg p_{150}((Qxx)) \lor Qx \le Sx$$

9:
$$Sx < 2 \cdot (Qx)$$
 by

6:
$$p_{150}((Qxx))$$

4:
$$\neg p_{150}((Qxx)) \lor Sx < 2 \cdot (Qx)$$

10:
$$\neg Qx \le Sx \lor \neg Sx < 2 \cdot (Qx)$$
 by

7:
$$Qx$$
 is a power of two

0:
$$\neg \mathbf{Q}x$$
 is a power of two $\lor \neg \mathbf{Q}x \le \mathbf{S}x \lor \neg \mathbf{S}x < 2 \cdot (\mathbf{Q}x)$

- 11: $\neg Sx < 2 \cdot (Qx)$ by
 - 8: $Qx \leq Sx$
 - 10: $\neg \mathbf{Q}x \leq \mathbf{S}x \quad \lor \quad \neg \mathbf{S}x < 2 \cdot (\mathbf{Q}x)$
- 12: QEA by
 - 9: $Sx < 2 \cdot (Qx)$
 - 11: $\neg Sx < 2 \cdot (Qx)$