Proof of Theorem 158

The theorem to be proved is
$\mathrm{Q} x$ is a power of two $\& \quad \mathrm{Q} x \leq \mathrm{S} x \quad \& \quad \mathrm{~S} x<2 \cdot \mathrm{Q} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{Q} x)$ is a power of two $\quad \vee \quad \neg(\mathrm{Q} x) \leq(\mathrm{S} x) \quad \vee \quad \neg(\mathrm{S} x)<(2 \cdot(\mathrm{Q} x))]]$

Special cases of the hypothesis and previous results:

$$
\begin{aligned}
0: & \neg \mathrm{Q} x \text { is a power of two } \vee \neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot(\mathrm{Q} x) \quad \text { from } \quad \mathrm{H}: x \\
1: & \neg \mathrm{Q} x=\mathrm{Q} x \quad \vee \quad \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \text { from } \quad \underline{157^{\rightarrow}} ; x ; \mathrm{Q} x \\
2: & \neg \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \vee \quad \mathrm{Q} x \text { is a power of two } \quad \text { from } \quad \underline{150}{ }^{\rightarrow} ; \mathrm{Q} x ; x \\
3: & \neg \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \vee \quad \mathrm{Q} x \leq \mathrm{S} x \quad \text { from } \quad \underline{150} \rightarrow ; \mathrm{Q} x ; x \\
4: & \neg \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \vee \quad \mathrm{S} x<2 \cdot(\mathrm{Q} x) \quad \text { from } \quad \underline{150 \rightarrow} ; \mathrm{Q} x ; x \\
5: & \mathrm{Q} x=\mathrm{Q} x \quad \text { from } \quad \underline{5} ; \mathrm{Q} x
\end{aligned}
$$

Inferences:

6: $\quad \mathrm{p}_{150}((\mathrm{Q} x x)) \quad$ by
5: $\mathrm{Q} x=\mathrm{Q} x$
1: $\neg \mathrm{Q} x=\mathrm{Q} x \quad \vee \quad \mathrm{p}_{150}((\mathrm{Q} x x))$
7: $\mathrm{Q} x$ is a power of two by
6: $\mathrm{p}_{150}((\mathrm{Q} x x))$
2: $\neg \mathrm{p}_{150}((\mathrm{Q} x x)) \vee \mathrm{Q} x$ is a power of two
8: $\quad \mathrm{Q} x \leq \mathrm{S} x \quad$ by
6: $\mathrm{p}_{150}((\mathrm{Q} x x))$
3: $\neg \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \vee \quad \mathrm{Q} x \leq \mathrm{S} x$
9: $\quad \mathrm{S} x<2 \cdot(\mathrm{Q} x) \quad$ by
6: $\mathrm{p}_{150}((\mathrm{Q} x x))$
4: $\neg \mathrm{p}_{150}((\mathrm{Q} x x)) \quad \vee \quad \mathrm{S} x<2 \cdot(\mathrm{Q} x)$
10: $\neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot(\mathrm{Q} x) \quad$ by
7: $\mathrm{Q} x$ is a power of two
0: $\neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot(\mathrm{Q} x)$

11: $\neg \mathrm{S} x<2 \cdot(\mathrm{Q} x) \quad$ by
8: $\mathrm{Q} x \leq \mathrm{S} x$
10: $\neg \mathrm{Q} x \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot(\mathrm{Q} x)$
12: $Q E A$ by
9: $\mathrm{S} x<2 \cdot(\mathrm{Q} x)$
11: $\neg \mathrm{S} x<2 \cdot(\mathrm{Q} x)$

