Proof of Theorem 156b

The theorem to be proved is

$$\exists q \le 1[p_{150}(q,0)]$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$\forall q[[\neg (q) \leq (1) \lor \neg p_{150}((q0))]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 1 \le 1 \lor \neg p_{150}((10))$$
 from H;1

1:
$$S0 = 1$$
 from 115

2:
$$p_{150}((10))$$
 \vee \neg 1 is a power of two \vee \neg 1 \leq S0 \vee \neg S0 $<$ 2 \cdot 1 from $150 <$;1;0

3: 1 is a power of two from
$$\underline{130}$$

4:
$$1 \le 1$$
 from 60;1

5:
$$\neg S0 = 0$$
 from 3;0

6:
$$1 = 0 \lor 1 < 2 \cdot 1$$
 from $137;1$

Equality substitutions:

7:
$$\neg S0 = 1 \lor 1 \le S0 \lor \neg 1 \le 1$$

8:
$$\neg S0 = 1 \lor S0 < 2 \cdot 1 \lor \neg 1 < 2 \cdot 1$$

9:
$$\neg S0 = 1 \lor S0 = 0 \lor \neg 1 = 0$$

Inferences:

10:
$$1 \le S0 \quad \lor \quad \neg \ 1 \le 1$$
 by

1:
$$S0 = 1$$

7:
$$\neg S0 = 1 \lor 1 \le S0 \lor \neg 1 \le 1$$

11:
$$S0 < 2 \cdot 1 \quad \lor \quad \neg 1 < 2 \cdot 1$$
 by

1:
$$S0 = 1$$

8:
$$\neg S0 = 1 \lor S0 < 2 \cdot 1 \lor \neg 1 < 2 \cdot 1$$

12:
$$S0 = 0 \quad \forall \quad \neg 1 = 0$$
 by

1: $S0 = 1$

9: $\neg S0 = 1 \quad \forall \quad S0 = 0 \quad \forall \quad \neg 1 = 0$

13: $p_{150}((10)) \quad \forall \quad \neg 1 \leq S0 \quad \forall \quad \neg S0 < 2 \cdot 1$ by

3: 1 is a power of two

2: $p_{150}((10)) \quad \forall \quad \neg 1$ is a power of two $\quad \forall \quad \neg 1 \leq S0 \quad \forall \quad \neg S0 < 2 \cdot 1$

14: $\neg p_{150}((10))$ by

4: $1 \leq 1$

0: $\neg 1 \leq 1 \quad \forall \quad \neg p_{150}((10))$

15: $1 \leq S0$ by

4: $1 \leq 1$

10: $1 \leq S0 \quad \forall \quad \neg 1 \leq 1$

16: $\neg 1 = 0$ by

5: $\neg S0 = 0$

12: $S0 = 0 \quad \forall \quad \neg 1 = 0$

17: $\neg 1 \leq S0 \quad \forall \quad \neg S0 < 2 \cdot 1$ by

14: $\neg p_{150}((10))$

13: $p_{150}((10))$

13: $p_{150}((10)) \quad \forall \quad \neg 1 \leq S0 \quad \forall \quad \neg S0 < 2 \cdot 1$

18: $\neg S0 < 2 \cdot 1$ by

15: $1 \leq S0$

17: $\neg 1 \leq S0 \quad \forall \quad \neg S0 < 2 \cdot 1$

19: $1 < 2 \cdot 1$ by

16: $\neg 1 = 0$

6: $1 = 0 \quad \forall \quad 1 < 2 \cdot 1$

20: $\neg 1 < 2 \cdot 1$ by

18: $\neg S0 < 2 \cdot 1$ $\rightarrow 1 < 2 \cdot 1$

11: $S0 < 2 \cdot 1$ $\rightarrow 1 < 2 \cdot 1$

21: QEA by

19: $1 < 2 \cdot 1$ 20: $\neg 1 < 2 \cdot 1$