Proof of Theorem 154

The theorem to be proved is

$$x \le y \rightarrow x \le Sy$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (y)]$$
 & $[\neg (x) \le (Sy)]]$

Special cases of the hypothesis and previous results:

- 0: $x \le y$ from H:x:y
- 1: $\neg x \leq Sy$ from H:x:y
- 2: $y \leq Sy$ from <u>63</u>;y
- 3: $\neg x \le y \quad \lor \quad \neg y \le Sy \quad \lor \quad x \le Sy \quad \text{from} \quad \frac{73}{3}; x; y; Sy$

Inferences:

4:
$$\neg y \le Sy \lor x \le Sy$$
 by

$$0: x \leq y$$

$$3: \neg x \leq y \quad \lor \quad \neg y \leq Sy \quad \lor \quad x \leq Sy$$

5:
$$\neg y \leq Sy$$
 by

1:
$$\neg x \leq Sy$$

$$4: \neg y \leq Sy \lor x \leq Sy$$

$$6: QEA$$
 by

$$2: y \leq Sy$$

5:
$$\neg y \leq Sy$$