Proof of Theorem 152

The theorem to be proved is
$\mathrm{p}_{150}(q, x) \quad \& \quad \mathrm{SS} x<2 \cdot q \quad \rightarrow \quad \mathrm{p}_{150}(q, \mathrm{~S} x)$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad\left[\left[\mathrm{p}_{150}((q x))\right] \quad \& \quad[(\mathrm{~S}(\mathrm{~S} x))<(2 \cdot q)] \quad \& \quad\left[\neg \mathrm{p}_{150}((q \mathrm{~S} x))\right]\right]$

Special cases of the hypothesis and previous results:

0: $\mathrm{p}_{150}((q x))$ from $\mathrm{H}: q: x$
1: $\mathrm{S}(\mathrm{S} x)<2 \cdot q \quad$ from $\quad \mathrm{H}: q: x$
2: $\neg \mathrm{p}_{150}((q \mathrm{~S} x))$ from $\mathrm{H}: q: x$
3: $\neg \mathrm{p}_{150}((q x)) \vee q$ is a power of two from $\underline{150}{ }^{\rightarrow} ; q ; x$
4: $\neg \mathrm{p}_{150}((q x)) \vee q \leq \mathrm{S} x \quad$ from $\quad \underline{150} \rightarrow ; q ; x$
5: $\quad \mathrm{p}_{150}((q \mathrm{~S} x)) \vee \neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x) \vee \neg \mathrm{S}(\mathrm{S} x)<2 \cdot q \quad$ from $\underline{150}{ }^{\leftarrow} ; q ; \mathrm{S} x$

6: $\quad \mathrm{S} x \leq \mathrm{S}(\mathrm{S} x) \quad$ from $\quad 63 ; \mathrm{S} x$
7: $\neg q \leq \mathrm{S} x \vee \neg \mathrm{~S} x \leq \mathrm{S}(\mathrm{S} x) \vee \quad q \leq \mathrm{S}(\mathrm{S} x) \quad$ from $\quad \underline{73} ; q ; \mathrm{S} x ; \mathrm{S}(\mathrm{S} x)$

Inferences:

8: q is a power of two by
$0: \mathrm{p}_{150}((q x))$
3: $\neg \mathrm{p}_{150}((q x)) \quad \vee \quad q$ is a power of two
9: $q \leq \mathrm{S} x \quad$ by
0: $\mathrm{p}_{150}((q x))$
4: $\neg \mathrm{p}_{150}((q x)) \vee \quad q \leq \mathrm{S} x$
10: $\mathrm{p}_{150}((q \mathrm{~S} x)) \vee \neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x)$ by
1: $S(S x)<2 \cdot q$
5: $\mathrm{p}_{150}((q \mathrm{~S} x)) \vee \neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x) \quad \vee \neg \mathrm{S}(\mathrm{S} x)<2 \cdot q$
11: $\neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x) \quad$ by
$2: \neg \mathrm{p}_{150}((q \mathrm{~S} x))$
10: $\mathrm{p}_{150}((q \mathrm{~S} x)) \vee \neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x)$

12: $\neg q \leq \mathrm{S} x \vee q \leq \mathrm{S}(\mathrm{S} x) \quad$ by
6: $\mathrm{S} x \leq \mathrm{S}(\mathrm{S} x)$
7: $\neg q \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x \leq \mathrm{S}(\mathrm{S} x) \quad \vee \quad q \leq \mathrm{S}(\mathrm{S} x)$
13: $\neg q \leq \mathrm{S}(\mathrm{S} x) \quad$ by
8: q is a power of two
11: $\neg q$ is a power of two $\vee \neg q \leq \mathrm{S}(\mathrm{S} x)$
14: $q \leq \mathrm{S}(\mathrm{S} x) \quad$ by
9: $q \leq \mathrm{S} x$
12: $\neg q \leq \mathrm{S} x \quad \vee \quad q \leq \mathrm{S}(\mathrm{S} x)$
15: $Q E A$ by
13: $\neg q \leq \mathrm{S}(\mathrm{S} x)$
14: $q \leq \mathrm{S}(\mathrm{S} x)$

