Proof of Theorem 152

The theorem to be proved is

 $p_{150}(q, x)$ & $SSx < 2 \cdot q \rightarrow p_{150}(q, Sx)$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[p_{150}((qx))] \& [(S(Sx)) < (2 \cdot q)] \& [\neg p_{150}((qSx))]]$

Special cases of the hypothesis and previous results:

0: $p_{150}((qx))$ from H:q:x 1: $S(Sx) < 2 \cdot q$ from H:q:x 2: $\neg p_{150}((qSx))$ from H:q:x 3: $\neg p_{150}((qx)) \lor q$ is a power of two from $\underline{150}^{\Rightarrow};q;x$ 4: $\neg p_{150}((qx)) \lor q \leq Sx$ from $\underline{150}^{\Rightarrow};q;x$ 5: $p_{150}((qSx)) \lor \neg q$ is a power of two $\lor \neg q \leq S(Sx) \lor \neg S(Sx) < 2 \cdot q$ from $\underline{150}^{\Leftarrow};q;Sx$

6: $Sx \leq S(Sx)$ from <u>63</u>;Sx 7: $\neg q \leq Sx \lor \neg Sx \leq S(Sx) \lor q \leq S(Sx)$ from <u>73</u>;q;Sx;S(Sx)

Inferences:

- 8: q is a power of two by 0: $p_{150}((qx))$ 3: $\neg p_{150}((qx)) \lor q$ is a power of two
- 9: $q \leq Sx$ by 0: $p_{150}((qx))$ 4: $\neg p_{150}((qx)) \lor q \leq Sx$
- 10: $p_{150}((qSx)) \lor \neg q$ is a power of two $\lor \neg q \le S(Sx)$ by 1: $S(Sx) < 2 \cdot q$ 5: $p_{150}((qSx)) \lor \neg q$ is a power of two $\lor \neg q \le S(Sx) \lor \neg S(Sx) < 2 \cdot q$
- 11: $\neg q$ is a power of two $\lor \neg q \leq S(Sx)$ by 2: $\neg p_{150}((qSx))$ 10: $p_{150}((qSx)) \lor \neg q$ is a power of two $\lor \neg q \leq S(Sx)$

- 12: $\neg q \leq Sx \lor q \leq S(Sx)$ by 6: $Sx \leq S(Sx)$ 7: $\neg q \leq Sx \lor \neg Sx \leq S(Sx) \lor q \leq S(Sx)$
- 13: $\neg q \leq S(Sx)$ by 8: q is a power of two 11: $\neg q$ is a power of two $\lor \neg q \leq S(Sx)$
- 14: $q \leq S(Sx)$ by 9: $q \leq Sx$ 12: $\neg q \leq Sx$ \lor $q \leq S(Sx)$
- 15: QEA by 13: $\neg q \leq S(Sx)$ 14: $q \leq S(Sx)$