Proof of Theorem 151a

The theorem to be proved is

$$p_{150}(q, x)$$
 & $p_{150}(q', x) \rightarrow \neg q < q'$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$'[[p_{150}((qx))] \& [p_{150}((q'x))] \& [(q) < (q')]]$$

Special cases of the hypothesis and previous results:

- 0: $p_{150}((qx))$ from H:q:x:q'
- 1: $p_{150}((q'x))$ from H:q:x:q'
- 2: q < q' from H:q:x:q'
- 3: $\neg p_{150}((qx)) \lor q$ is a power of two from $\underline{150} \Rightarrow ;q;x$
- 4: $\neg p_{150}((qx)) \lor Sx < 2 \cdot q$ from $\underline{150} \Rightarrow ;q;x$
- 5: $\neg p_{150}((q'x)) \lor q'$ is a power of two from $\underline{150} \Rightarrow ;q';x$
- 6: $\neg p_{150}((q'x)) \lor q' \le Sx$ from $\underline{150} \Rightarrow ;q';x$
- 7: $\neg q$ is a power of two $\lor \neg q'$ is a power of two $\lor \neg q < q' \lor \neg q' < 2 \cdot q$ from 149;q;q'

8:
$$\neg q' \leq Sx \quad \lor \quad \neg Sx < 2 \cdot q \quad \lor \quad q' < 2 \cdot q \quad \text{from} \quad \underline{122}; q'; Sx; 2 \cdot q$$

Inferences:

- 9: q is a power of two by
 - 0: $p_{150}((qx))$
 - 3: $\neg p_{150}((qx)) \lor q$ is a power of two
- 10: $Sx < 2 \cdot q$ by
 - 0: $p_{150}((qx))$
 - 4: $\neg p_{150}((qx)) \lor Sx < 2 \cdot q$
- 11: q' is a power of two by
 - 1: $p_{150}((q'x))$
 - 5: $\neg p_{150}((q'x)) \lor q'$ is a power of two
- 12: $q' \leq Sx$ by
 - 1: $p_{150}((q'x))$
 - 6: $\neg p_{150}((q'x)) \lor q' \le Sx$

- 13: $\neg q$ is a power of two $\lor \neg q'$ is a power of two $\lor \neg q' < 2 \cdot q$ by
 - 2: q < q'
 - 7: $\neg q$ is a power of two $\lor \neg q'$ is a power of two $\lor \neg q < q' \lor \neg q' < 2 \cdot q$
- 14: $\neg q'$ is a power of two $\lor \neg q' < 2 \cdot q$ by
 - 9: q is a power of two
 - 13: $\neg q$ is a power of two $\lor \neg q'$ is a power of two $\lor \neg q' < 2 \cdot q$
- 15: $\neg q' \leq Sx \quad \lor \quad q' < 2 \cdot q$ by
 - 10: $Sx < 2 \cdot q$
 - 8: $\neg q' \leq Sx \quad \lor \quad \neg Sx < 2 \cdot q \quad \lor \quad q' < 2 \cdot q$
- 16: $\neg q' < 2 \cdot q$ by
 - 11: q' is a power of two
 - 14: $\neg q'$ is a power of two $\lor \neg q' < 2 \cdot q$
- 17: $q' < 2 \cdot q$ by
 - 12: $q' \leq Sx$
 - 15: $\neg q' \leq Sx \quad \lor \quad q' < 2 \cdot q$
- 18: QEA by
 - 16: $\neg q' < 2 \cdot q$
 - 17: $q' < 2 \cdot q$