Proof of Theorem 151a

The theorem to be proved is
$\mathrm{p}_{150}(q, x) \quad \& \quad \mathrm{p}_{150}\left(q^{\prime}, x\right) \quad \rightarrow \quad \neg q<q^{\prime}$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad '\left[\left[\mathrm{p}_{150}((q x))\right] \quad \& \quad\left[\mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right)\right] \quad \& \quad\left[(q)<\left(q^{\prime}\right)\right]\right]$

Special cases of the hypothesis and previous results:

0: $\quad \mathrm{p}_{150}((q x)) \quad$ from $\quad \mathrm{H}: q: x: q^{\prime}$
1: $\mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right)$ from $\mathrm{H}: q: x: q^{\prime}$
2: $q<q^{\prime} \quad$ from $\mathrm{H}: q: x: q^{\prime}$
3: $\neg \mathrm{p}_{150}((q x)) \vee q$ is a power of two from $\underline{150}{ }^{\rightarrow} ; q ; x$
4: $\neg \mathrm{p}_{150}((q x)) \vee \mathrm{S} x<2 \cdot q \quad$ from $\quad \underline{150}{ }^{\rightarrow} ; q ; x$
5: $\neg \mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right) \vee \quad q^{\prime}$ is a power of two from $\underline{150}{ }^{\rightarrow} ; q^{\prime} ; x$
6: $\neg \mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right) \vee q^{\prime} \leq \mathrm{S} x \quad$ from $\quad \underline{150}{ }^{\rightarrow} ; q^{\prime} ; x$
7: $\neg q$ is a power of two $\vee \neg q^{\prime}$ is a power of two $\vee \neg q<q^{\prime} \quad \vee \neg q^{\prime}<2 \cdot q$ from 149; $q ; q^{\prime}$

8: $\neg q^{\prime} \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad \vee \quad q^{\prime}<2 \cdot q \quad$ from $\quad \underline{122} ; q^{\prime} ; \mathrm{S} x ; 2 \cdot q$

Inferences:

9: $\quad q$ is a power of two by
$0: \mathrm{p}_{150}((q x))$
3: $\neg \mathrm{p}_{150}((q x)) \quad \vee \quad q$ is a power of two
10: $\quad \mathrm{S} x<2 \cdot q \quad$ by
0: $\mathrm{p}_{150}((q x))$
4: $\neg \mathrm{p}_{150}((q x)) \quad \vee \quad \mathrm{S} x<2 \cdot q$
11: q^{\prime} is a power of two by
1: $\mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right)$
5: $\neg \mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right) \quad \vee \quad q^{\prime}$ is a power of two
12: $\quad q^{\prime} \leq \mathrm{S} x \quad$ by
1: $\mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right)$
6: $\neg \mathrm{p}_{150}\left(\left(q^{\prime} x\right)\right) \quad \vee \quad q^{\prime} \leq \mathrm{S} x$

13: $\neg q$ is a power of two $\vee \neg q^{\prime}$ is a power of two $\vee \neg q^{\prime}<2 \cdot q \quad$ by 2: $q<q^{\prime}$
7: $\neg q$ is a power of two $\vee \neg q^{\prime}$ is a power of two $\vee \neg q<q^{\prime} \quad \vee \neg q^{\prime}<2 \cdot q$
14: $\neg q^{\prime}$ is a power of two $\vee \neg q^{\prime}<2 \cdot q \quad$ by
9: q is a power of two
13: $\neg q$ is a power of two $\vee \neg q^{\prime}$ is a power of two $\vee \neg q^{\prime}<2 \cdot q$
15: $\neg q^{\prime} \leq \mathrm{S} x \vee q^{\prime}<2 \cdot q \quad$ by
10: $\mathrm{S} x<2 \cdot q$
8: $\neg q^{\prime} \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x<2 \cdot q \quad \vee \quad q^{\prime}<2 \cdot q$
16: $\neg q^{\prime}<2 \cdot q \quad$ by
11: q^{\prime} is a power of two
14: $\neg q^{\prime}$ is a power of two $\vee \neg q^{\prime}<2 \cdot q$
17: $\quad q^{\prime}<2 \cdot q \quad$ by
12: $q^{\prime} \leq \mathrm{S} x$
15: $\neg q^{\prime} \leq \mathrm{S} x \quad \vee \quad q^{\prime}<2 \cdot q$
18: $Q E A$ by
16: $\neg q^{\prime}<2 \cdot q$
17: $q^{\prime}<2 \cdot q$

