Proof of Theorem 14i

The theorem to be proved is
$x+\mathrm{S} y=\mathrm{S} x+y \quad \rightarrow \quad x+\mathrm{SS} y=\mathrm{S} x+\mathrm{S} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x+(\mathrm{S} y))=((\mathrm{S} x)+y)] \quad \& \quad[\neg(x+(\mathrm{S}(\mathrm{S} y)))=((\mathrm{S} x)+(\mathrm{S} y))]]$

Special cases of the hypothesis and previous results:

0: $\quad(\mathrm{S} x)+y=x+(\mathrm{S} y) \quad$ from $\quad \mathrm{H}: x: y$
1: $\neg(\mathrm{S} x)+(\mathrm{S} y)=x+(\mathrm{S}(\mathrm{S} y)) \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad \mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{S} y)) \quad$ from $\quad \underline{12} ; x ; \mathrm{S} y$
3: $\quad \mathrm{S}((\mathrm{S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y) \quad$ from $\quad 12 ; \mathrm{S} x ; y$

Equality substitutions:

$$
\begin{aligned}
& \text { 4: } \neg(\mathrm{S} x)+y=x+(\mathrm{S} y) \quad \vee \mathrm{S}((\mathrm{~S} x)+y)=x+(\mathrm{S}(\mathrm{~S} y)) \quad \vee \quad \neg \mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{~S} y)) \\
& 5: \quad \neg \mathrm{S}((\mathrm{~S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y) \quad \vee \quad \neg \mathrm{S}((\mathrm{~S} x)+y)=x+(\mathrm{S}(\mathrm{~S} y)) \quad \vee \quad(\mathrm{S} x)+(\mathrm{S} y)= \\
& x+(\mathrm{S}(\mathrm{~S} y))
\end{aligned}
$$

Inferences:

6: $\quad \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad \neg \mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{S} y)) \quad$ by
$0:(\mathrm{S} x)+y=x+(\mathrm{S} y)$
4: $\neg(\mathrm{S} x)+y=x+(\mathrm{S} y) \quad \vee \quad \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \vee \neg \mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{S} y))$
7: $\quad \neg \mathrm{S}((\mathrm{S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y) \quad \vee \quad \neg \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad$ by
1: $\neg(\mathrm{S} x)+(\mathrm{S} y)=x+(\mathrm{S}(\mathrm{S} y))$
$5: \neg \mathrm{S}((\mathrm{S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y) \vee \neg \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad(\mathrm{S} x)+(\mathrm{S} y)=$ $x+(\mathrm{S}(\mathrm{S} y))$

8: $\quad \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad$ by
2: $\mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{S} y))$
6: $\mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad \vee \quad \neg \mathrm{S}(x+(\mathrm{S} y))=x+(\mathrm{S}(\mathrm{S} y))$
9: $\quad \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y)) \quad$ by
3: $\mathrm{S}((\mathrm{S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y)$
7: $\neg \mathrm{S}((\mathrm{S} x)+y)=(\mathrm{S} x)+(\mathrm{S} y) \quad \vee \quad \neg \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y))$

10: $Q E A$ by
8: $\mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y))$
9: $\neg \mathrm{S}((\mathrm{S} x)+y)=x+(\mathrm{S}(\mathrm{S} y))$

