Proof of Theorem 14b

The theorem to be proved is
$x+\mathrm{S} 0=\mathrm{S} x+0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x+(\mathrm{S} 0))=((\mathrm{S} x)+0)]]$

Special cases of the hypothesis and previous results:

0: $\neg(\mathrm{S} x)+0=x+(\mathrm{S} 0) \quad$ from $\quad \mathrm{H}: x$
1: $x+0=x \quad$ from $\quad \underline{12} ; x ; 0$
2: $\quad \mathrm{S}(x+0)=x+(\mathrm{S} 0) \quad$ from $\quad 12 ; x ; 0$
3: $\quad(\mathrm{S} x)+0=\mathrm{S} x \quad$ from $\quad \underline{12} ; \mathrm{S} x$

Equality substitutions:

4: $\neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=x+(\mathrm{S} 0) \quad \vee \quad \mathrm{S}(x)=x+(\mathrm{S} 0)$
5: $\neg(\mathrm{S} x)+0=\mathrm{S} x \vee(\mathrm{~S} x)+0=x+(\mathrm{S} 0) \vee \neg \mathrm{S} x=x+(\mathrm{S} 0)$

Inferences:

6: $\quad \neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
$0: \neg(\mathrm{S} x)+0=x+(\mathrm{S} 0)$
$5: \neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee(\mathrm{~S} x)+0=x+(\mathrm{S} 0) \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x$
7: $\neg \mathrm{S}(x+0)=x+(\mathrm{S} 0) \vee \quad x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
1: $x+0=x$
4: $\neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=x+(\mathrm{S} 0) \quad \vee \quad x+(\mathrm{S} 0)=\mathrm{S} x$
8: $\quad x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
2: $\mathrm{S}(x+0)=x+(\mathrm{S} 0)$
7: $\neg \mathrm{S}(x+0)=x+(\mathrm{S} 0) \vee x+(\mathrm{S} 0)=\mathrm{S} x$
9: $\quad \neg x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
3: $(\mathrm{S} x)+0=\mathrm{S} x$
6: $\neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x$
10: $Q E A$ by
8: $x+(\mathrm{S} 0)=\mathrm{S} x$
9: $\neg x+(\mathrm{S} 0)=\mathrm{S} x$

