Proof of Theorem 14b

The theorem to be proved is

$$x + S0 = Sx + 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x + (S0)) = ((Sx) + 0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg (Sx) + 0 = x + (S0)$$
 from H:x

1:
$$x + 0 = x$$
 from $12;x;0$

2:
$$S(x+0) = x + (S0)$$
 from $12;x;0$

3:
$$(Sx) + 0 = Sx$$
 from 12; Sx

Equality substitutions:

4:
$$\neg x + 0 = x \lor \neg S(x + 0) = x + (S0) \lor S(x) = x + (S0)$$

5:
$$\neg (Sx) + 0 = Sx \lor (Sx) + 0 = x + (S0) \lor \neg Sx = x + (S0)$$

Inferences:

6:
$$\neg (Sx) + 0 = Sx \lor \neg x + (S0) = Sx$$
 by

$$0: \neg (Sx) + 0 = x + (S0)$$

5:
$$\neg (Sx) + 0 = Sx \lor (Sx) + 0 = x + (S0) \lor \neg x + (S0) = Sx$$

7:
$$\neg S(x+0) = x + (S0) \lor x + (S0) = Sx$$
 by

1:
$$x + 0 = x$$

4:
$$\neg x + 0 = x \lor \neg S(x + 0) = x + (S0) \lor x + (S0) = Sx$$

8:
$$x + (S0) = Sx$$
 by

2:
$$S(x+0) = x + (S0)$$

7:
$$\neg S(x+0) = x + (S0) \lor x + (S0) = Sx$$

9:
$$\neg x + (S0) = Sx$$
 by

3:
$$(Sx) + 0 = Sx$$

6:
$$\neg (Sx) + 0 = Sx \lor \neg x + (S0) = Sx$$

10:
$$QEA$$
 by

8:
$$x + (S0) = Sx$$

9:
$$\neg x + (S0) = Sx$$