Proof of Theorem 149

The theorem to be proved is

 $\neg \left[q \text{ is a power of two} \quad \& \quad q' \text{ is a power of two} \quad \& \quad q < q' \quad \& \quad q' < 2 \cdot q \right]$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) '[[(q) is a power of two] & [(q') is a power of two] & [(q) < (q')] & [(q') < (2 \cdot q)]]

Special cases of the hypothesis and previous results:

0: q is a power of two from H:q:q'
1: q' is a power of two from H:q:q'
2:
$$q < q'$$
 from H:q:q'
3: $q' < 2 \cdot q$ from H:q:q'
4: $\neg q$ is a power of two $\lor 2 \cdot q$ is a power of two from 135;q
5: $\neg q$ is a power of two $\lor 2 \uparrow x = q$ from 129^{->};q:x
6: $\neg q'$ is a power of two $\lor 2 \uparrow y = q'$ from 129^{->};q':y
7: $\neg 2 \cdot q$ is a power of two $\lor 2 \cdot q = 2 \uparrow z$ from 129^{->};2 $\cdot q$:z
8: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ from 126;2;x
9: $\neg 2 \uparrow x < 2 \uparrow y \lor x < y$ from 147;x;y
10: $\neg 2 \uparrow y < 2 \uparrow z \lor y < z$ from 147;y;z
11: $\neg 2 \uparrow (Sx) = 2 \uparrow z \lor Sx = z$ from 148;Sx;z
12: $\neg x < y \lor \neg y < Sx$ from 111;x;y

Equality substitutions:

$$13: \neg 2 \uparrow x = q \quad \lor \quad \neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \quad \lor \quad 2 \cdot (q) = 2 \uparrow (Sx)$$

$$14: \neg 2 \uparrow y = q' \quad \lor \quad 2 \uparrow x < 2 \uparrow y \quad \lor \quad \neg 2 \uparrow x < q'$$

$$15: \neg 2 \uparrow y = q' \quad \lor \quad 2 \uparrow y < 2 \uparrow z \quad \lor \quad \neg q' < 2 \uparrow z$$

$$16: \neg 2 \cdot q = 2 \uparrow z \quad \lor \quad \neg q' < 2 \cdot q \quad \lor \quad q' < 2 \uparrow z$$

$$17: \neg 2 \cdot q = 2 \uparrow z \quad \lor \quad \neg 2 \uparrow (Sx) = 2 \cdot q \quad \lor \quad 2 \uparrow (Sx) = 2 \uparrow z$$

- 18: $\neg Sx = z \lor y < Sx \lor \neg y < z$
- 19: $\neg q = 2 \uparrow x \quad \lor \quad \neg (q) < q' \quad \lor \quad \neg (2 \uparrow x) < q'$

Inferences:

20: $2 \cdot q$ is a power of two by 0: q is a power of two 4: $\neg q$ is a power of two $\lor 2 \cdot q$ is a power of two 21: $2 \uparrow x = q$ by 0: q is a power of two 5: $\neg q$ is a power of two $\lor 2 \uparrow x = q$ 22: $2 \uparrow y = q'$ by 1: q' is a power of two 6: $\neg q'$ is a power of two $\lor 2 \uparrow y = q'$ 23: $\neg 2 \uparrow x = q \quad \lor \quad 2 \uparrow x < q'$ by 2: q < q'19: $\neg 2 \uparrow x = q \quad \lor \quad \neg q < q' \quad \lor \quad 2 \uparrow x < q'$ 24: $\neg 2 \cdot q = 2 \uparrow z \quad \lor \quad q' < 2 \uparrow z \quad by$ 3: $q' < 2 \cdot q$ 16: $\neg 2 \cdot q = 2 \uparrow z \quad \lor \quad \neg q' < 2 \cdot q \quad \lor \quad q' < 2 \uparrow z$ 25: $\neg 2 \uparrow x = q \quad \lor \quad 2 \uparrow (Sx) = 2 \cdot q \qquad by$ 8: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ 13: $\neg 2 \uparrow x = q \quad \lor \quad \neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \quad \lor \quad 2 \uparrow (Sx) = 2 \cdot q$ 26: $2 \cdot q = 2 \uparrow z$ bv 20: $2 \cdot q$ is a power of two 7: $\neg 2 \cdot q$ is a power of two $\lor 2 \cdot q = 2 \uparrow z$ 27: $2 \uparrow x < q'$ by 21: $2 \uparrow x = q$ 23: $\neg 2 \uparrow x = q \quad \lor \quad 2 \uparrow x < q'$ 28: $2 \uparrow (Sx) = 2 \cdot q$ by 21: $2 \uparrow x = q$ 25: $\neg 2 \uparrow x = q \quad \lor \quad 2 \uparrow (Sx) = 2 \cdot q$

29: $2 \uparrow x < 2 \uparrow y \quad \lor \quad \neg 2 \uparrow x < q'$ by 22: $2 \uparrow y = q'$ 14: $\neg 2 \uparrow y = q' \quad \lor \quad 2 \uparrow x < 2 \uparrow y \quad \lor \quad \neg 2 \uparrow x < q'$ 30: $2 \uparrow y < 2 \uparrow z \quad \lor \quad \neg q' < 2 \uparrow z \quad by$ 22: $2 \uparrow y = q'$ 15: $\neg 2 \uparrow y = q' \quad \lor \quad 2 \uparrow y < 2 \uparrow z \quad \lor \quad \neg q' < 2 \uparrow z$ 31: $\neg 2 \uparrow (Sx) = 2 \cdot q \quad \lor \quad 2 \uparrow (Sx) = 2 \uparrow z \qquad by$ 26: $2 \cdot q = 2 \uparrow z$ 17: $\neg 2 \cdot q = 2 \uparrow z \quad \lor \quad \neg 2 \uparrow (Sx) = 2 \cdot q \quad \lor \quad 2 \uparrow (Sx) = 2 \uparrow z$ 32: $q' < 2 \uparrow z$ by 26: $2 \cdot q = 2 \uparrow z$ 24: $\neg 2 \cdot q = 2 \uparrow z \quad \lor \quad q' < 2 \uparrow z$ 33: $2 \uparrow x < 2 \uparrow y$ by 27: $2 \uparrow x < q'$ 29: $2 \uparrow x < 2 \uparrow y \quad \lor \quad \neg 2 \uparrow x < q'$ 34: $2 \uparrow (Sx) = 2 \uparrow z$ by 28: $2 \uparrow (\mathbf{S}x) = 2 \cdot q$ 31: $\neg 2 \uparrow (\mathbf{S}x) = 2 \cdot q \quad \lor \quad 2 \uparrow (\mathbf{S}x) = 2 \uparrow z$ 35: $2 \uparrow y < 2 \uparrow z$ by 32: $q' < 2 \uparrow z$ 30: $2 \uparrow y < 2 \uparrow z \quad \lor \quad \neg q' < 2 \uparrow z$ 36: x < y by 33: $2 \uparrow x < 2 \uparrow y$ 9: $\neg 2 \uparrow x < 2 \uparrow y \lor x < y$ 37: Sx = z by 34: $2 \uparrow (Sx) = 2 \uparrow z$ 11: $\neg 2 \uparrow (\mathbf{S}x) = 2 \uparrow z \lor \mathbf{S}x = z$ 38: y < z by 35: $2 \uparrow y < 2 \uparrow z$ 10: $\neg 2 \uparrow y < 2 \uparrow z \quad \lor \quad y < z$ 39: $\neg y < Sx$ by 36: x < y12: $\neg x < y \lor \neg y < Sx$

- 40: $y < Sx \lor \neg y < z$ by 37: Sx = z18: $\neg Sx = z \lor y < Sx \lor \neg y < z$
- 41: y < Sx by 38: y < z40: $y < Sx \lor \neg y < z$
- 42: QEA by 39: $\neg y < Sx$ 41: y < Sx