Proof of Theorem 149

The theorem to be proved is
$\neg\left[q\right.$ is a power of two $\& q^{\prime}$ is a power of two $\left.\& q<q^{\prime} \quad \& \quad q^{\prime}<2 \cdot q\right]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad \prime\left[[(q)\right.$ is a power of two $] \quad \& \quad\left[\left(q^{\prime}\right)\right.$ is a power of two $] \quad \& \quad\left[(q)<\left(q^{\prime}\right)\right] \quad \& \quad\left[\left(q^{\prime}\right)<\right.$ $(2 \cdot q)]]$

Special cases of the hypothesis and previous results:

0: q is a power of two from $\mathrm{H}: q: q^{\prime}$
1: q^{\prime} is a power of two from $\mathrm{H}: q: q^{\prime}$
2: $q<q^{\prime}$ from $\mathrm{H}: q: q^{\prime}$
3: $\quad q^{\prime}<2 \cdot q \quad$ from $\quad \mathrm{H}: q: q^{\prime}$
4: $\neg q$ is a power of two $\vee 2 \cdot q$ is a power of two from $\underline{135 ; q}$
5: $\neg q$ is a power of two $\vee 2 \uparrow x=q \quad$ from $\quad \underline{129} \rightarrow ; q: x$
6: $\neg q^{\prime}$ is a power of two $\vee 2 \uparrow y=q^{\prime} \quad$ from $\quad \underline{129}^{\rightarrow} ; q^{\prime}: y$
7: $\neg 2 \cdot q$ is a power of two $\vee 2 \cdot q=2 \uparrow z \quad$ from $\quad \underline{129} \rightarrow ; 2 \cdot q: z$
8: $2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad$ from $\quad \underline{126 ; 2 ; x}$
9: $\quad \neg 2 \uparrow x<2 \uparrow y \quad \vee \quad x<y \quad$ from $\quad 147 ; x ; y$
10: $\neg 2 \uparrow y<2 \uparrow z \vee y<z \quad$ from \quad 147; $y ; z$
11: $\quad \neg 2 \uparrow(\mathrm{~S} x)=2 \uparrow z \quad \vee \quad \mathrm{~S} x=z \quad$ from $\quad \underline{148} ; \mathrm{S} x ; z$
12: $\neg x<y \quad \vee \neg y<\mathrm{S} x \quad$ from $\quad \underline{111} ; x ; y$

Equality substitutions:

13: $\neg 2 \uparrow x=q \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad 2 \cdot(q)=2 \uparrow(\mathrm{~S} x)$
14: $\quad \neg 2 \uparrow y=q^{\prime} \vee 2 \uparrow x<2 \uparrow y \quad \vee \quad \neg 2 \uparrow x<q^{\prime}$
15: $\neg 2 \uparrow y=q^{\prime} \vee 2 \uparrow y<2 \uparrow z \vee \neg q^{\prime}<2 \uparrow z$
16: $\neg 2 \cdot q=2 \uparrow z \quad \vee \neg q^{\prime}<2 \cdot q \quad \vee \quad q^{\prime}<2 \uparrow z$
17: $\neg 2 \cdot q=2 \uparrow z \quad \vee \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \vee 2 \uparrow(\mathrm{~S} x)=2 \uparrow z$

18: $\neg \mathrm{S} x=z \quad \vee \quad y<\mathrm{S} x \quad \vee \quad \neg y<z$
19: $\neg q=2 \uparrow x \quad \vee \neg(q)<q^{\prime} \quad \vee \quad \neg(2 \uparrow x)<q^{\prime}$

Inferences:

20: $2 \cdot q$ is a power of two by
$0: q$ is a power of two
4: $\neg q$ is a power of two $\vee 2 \cdot q$ is a power of two
21: $\quad 2 \uparrow x=q \quad$ by
0: q is a power of two
5: $\neg q$ is a power of two $\vee 2 \uparrow x=q$
22: $2 \uparrow y=q^{\prime} \quad$ by
1: q^{\prime} is a power of two
6: $\neg q^{\prime}$ is a power of two $\vee 2 \uparrow y=q^{\prime}$
23: $\neg 2 \uparrow x=q \quad \vee \quad 2 \uparrow x<q^{\prime} \quad$ by
2: $q<q^{\prime}$
19: $\neg 2 \uparrow x=q \quad \vee \quad \neg q<q^{\prime} \quad \vee \quad 2 \uparrow x<q^{\prime}$
24: $\neg 2 \cdot q=2 \uparrow z \quad \vee \quad q^{\prime}<2 \uparrow z \quad$ by
3: $q^{\prime}<2 \cdot q$
16: $\neg 2 \cdot q=2 \uparrow z \quad \vee \quad \neg q^{\prime}<2 \cdot q \quad \vee \quad q^{\prime}<2 \uparrow z$
25: $\quad \neg 2 \uparrow x=q \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ by
8: $2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x)$
13: $\neg 2 \uparrow x=q \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q$
26: $\quad 2 \cdot q=2 \uparrow z \quad$ by
20: $2 \cdot q$ is a power of two
7: $\neg 2 \cdot q$ is a power of two $\vee 2 \cdot q=2 \uparrow z$
27: $2 \uparrow x<q^{\prime} \quad$ by
21: $2 \uparrow x=q$
23: $\neg 2 \uparrow x=q \quad \vee \quad 2 \uparrow x<q^{\prime}$
28: $\quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ by
21: $2 \uparrow x=q$
25: $\neg 2 \uparrow x=q \vee 2 \uparrow(\mathrm{~S} x)=2 \cdot q$

29: $\quad 2 \uparrow x<2 \uparrow y \quad \vee \quad \neg 2 \uparrow x<q^{\prime} \quad$ by
22: $2 \uparrow y=q^{\prime}$
14: $\neg 2 \uparrow y=q^{\prime} \vee 2 \uparrow x<2 \uparrow y \quad \vee \quad \neg 2 \uparrow x<q^{\prime}$
30: $\quad 2 \uparrow y<2 \uparrow z \quad \vee \quad \neg q^{\prime}<2 \uparrow z \quad$ by
22: $2 \uparrow y=q^{\prime}$
15: $\neg 2 \uparrow y=q^{\prime} \quad \vee \quad 2 \uparrow y<2 \uparrow z \quad \vee \quad \neg q^{\prime}<2 \uparrow z$
31: $\quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \uparrow z \quad$ by
26: $2 \cdot q=2 \uparrow z$
17: $\neg 2 \cdot q=2 \uparrow z \quad \vee \quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \uparrow z$
32: $\quad q^{\prime}<2 \uparrow z \quad$ by
26: $2 \cdot q=2 \uparrow z$
24: $\neg 2 \cdot q=2 \uparrow z \quad \vee \quad q^{\prime}<2 \uparrow z$
33: $\quad 2 \uparrow x<2 \uparrow y \quad$ by
27: $2 \uparrow x<q^{\prime}$
29: $2 \uparrow x<2 \uparrow y \vee \neg 2 \uparrow x<q^{\prime}$
34: $\quad 2 \uparrow(\mathrm{~S} x)=2 \uparrow z \quad$ by
28: $2 \uparrow(\mathrm{~S} x)=2 \cdot q$
31: $\neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \vee 2 \uparrow(\mathrm{~S} x)=2 \uparrow z$
35: $\quad 2 \uparrow y<2 \uparrow z \quad$ by
32: $q^{\prime}<2 \uparrow z$
30: $2 \uparrow y<2 \uparrow z \quad \vee \quad q^{\prime}<2 \uparrow z$
36: $x<y \quad$ by
33: $2 \uparrow x<2 \uparrow y$
9: $\neg 2 \uparrow x<2 \uparrow y \quad \vee \quad x<y$
37: $\quad \mathrm{S} x=z \quad$ by
34: $2 \uparrow(\mathrm{~S} x)=2 \uparrow z$
11: $\neg 2 \uparrow(\mathrm{~S} x)=2 \uparrow z \quad \vee \quad \mathrm{~S} x=z$
38: $y<z \quad$ by
35: $2 \uparrow y<2 \uparrow z$
10: $\neg 2 \uparrow y<2 \uparrow z \vee y<z$
39: $\neg y<\mathrm{S} x \quad$ by
36: $x<y$
12: $\neg x<y \quad \vee \quad \neg y<\mathrm{S} x$

40: $y<\mathrm{S} x \quad \vee \neg y<z \quad$ by
37: $\mathrm{S} x=z$
18: $\neg \mathrm{S} x=z \quad \vee \quad y<\mathrm{S} x \quad \vee \quad \neg y<z$
41: $y<\mathrm{S} x \quad$ by
38: $y<z$
40: $y<\mathrm{S} x \quad \vee \quad \neg y<z$
42: $Q E A \quad$ by
39: $\neg y<\mathrm{S} x$
41: $y<\mathrm{S} x$

