Proof of Theorem 148a

The theorem to be proved is

 $2 \upharpoonright x = 2 \upharpoonright y \quad \rightarrow \quad \neg \; x < y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(2 \uparrow x) = (2 \uparrow y)] \& [(x) < (y)]]$

Special cases of the hypothesis and previous results:

0:	$2 \uparrow y = 2 \uparrow x$	from	H:x:y			
1:	x < y from	H:x:y				
2:	$\neg x < y \lor 2$	$\uparrow x < 2$	$\uparrow y$	from	<u>145</u> ;x;y	
3:	$\neg \ 2 \uparrow x < 2 \uparrow y$	$\vee \neg 2$	$2\uparrow y =$	$2 \uparrow x$	from	$\underline{56}^{\rightarrow};2\uparrow x;2\uparrow y$

Inferences:

- 4: $\neg 2 \uparrow x < 2 \uparrow y$ by 0: $2 \uparrow y = 2 \uparrow x$ 3: $\neg 2 \uparrow x < 2 \uparrow y$ \lor $\neg 2 \uparrow y = 2 \uparrow x$
- 5: $2 \uparrow x < 2 \uparrow y$ by 1: x < y2: $\neg x < y \lor 2 \uparrow x < 2 \uparrow y$
- 6: QEA by 4: $\neg 2 \uparrow x < 2 \uparrow y$ 5: $2 \uparrow x < 2 \uparrow y$