Proof of Theorem 148a

The theorem to be proved is
$2 \uparrow x=2 \uparrow y \quad \rightarrow \quad \neg x<y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(2 \uparrow x)=(2 \uparrow y)] \quad \& \quad[(x)<(y)]]$

Special cases of the hypothesis and previous results:
$0: \quad 2 \uparrow y=2 \uparrow x \quad$ from $\quad \mathrm{H}: x: y$
1: $x<y$ from $\mathrm{H}: x: y$
2: $\neg x<y \quad \vee \quad 2 \uparrow x<2 \uparrow y \quad$ from $\quad \underline{145} ; x ; y$
3: $\neg 2 \uparrow x<2 \uparrow y \quad \vee \quad \neg 2 \uparrow y=2 \uparrow x \quad$ from $\quad \underline{56}^{-} ; 2 \uparrow x ; 2 \uparrow y$

Inferences:

4: $\neg 2 \uparrow x<2 \uparrow y \quad$ by
0: $2 \uparrow y=2 \uparrow x$
3: $\neg 2 \uparrow x<2 \uparrow y \quad \vee \quad \neg 2 \uparrow y=2 \uparrow x$
5: $\quad 2 \uparrow x<2 \uparrow y \quad$ by
1: $x<y$
$2: \neg x<y \quad \vee \quad 2 \uparrow x<2 \uparrow y$
6: $Q E A$ by
4: $\neg 2 \uparrow x<2 \uparrow y$
5: $2 \uparrow x<2 \uparrow y$

