Proof of Theorem 144

The theorem to be proved is

 $x < y \quad \& \quad y \leq z \quad \rightarrow \quad x < z$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) [[(x) < (y)] & $[(y) \le (z)]$ & $[\neg (x) < (z)]]$

Special cases of the hypothesis and previous results:

0: x < y from H:x:y:z 1: $y \le z$ from H:x:y:z 2: $\neg x < z$ from H:x:y:z 3: $\neg x < y \lor x \le y$ from $\underline{56}^{\rightarrow};x;y$ 4: $\neg x \le y \lor \neg y \le z \lor x \le z$ from $\underline{73};x;y;z$ 5: $x < z \lor \neg x \le z \lor z = x$ from $\underline{56}^{\leftarrow};x;z$ 6: $\neg x < y \lor \neg y \le x$ from $\underline{80};x;y$

Equality substitutions:

7:
$$\neg z = x \lor \neg y \leq z \lor y \leq x$$

Inferences:

- 8: $x \le y$ by 0: x < y3: $\neg x < y \lor x \le y$
- 9: $\neg y \le x$ by 0: x < y6: $\neg x < y$ \lor $\neg y \le x$
- 10: $\neg x \leq y \lor x \leq z$ by 1: $y \leq z$ 4: $\neg x \leq y \lor \neg y \leq z \lor x \leq z$
- 11: $\neg z = x \lor y \le x$ by 1: $y \le z$ 7: $\neg z = x \lor \neg y \le z \lor y \le x$

- 12: $\neg x \leq z \quad \lor \quad z = x \quad \text{by}$ 2: $\neg x < z$ 5: $x < z \quad \lor \quad \neg x \leq z \quad \lor \quad z = x$ 13: $x \leq z \quad \text{by}$ 8: $x \leq y$
- 14: $\neg z = x$ by 9: $\neg y \leq x$ 11: $\neg z = x \lor y \leq x$

10: $\neg x \leq y \quad \lor \quad x \leq z$

- 15: z = x by 13: $x \le z$ 12: $\neg x \le z \lor z = x$
- 16: QEA by 14: $\neg z = x$ 15: z = x