Proof of Theorem 144

The theorem to be proved is
$x<y \quad \& \quad y \leq z \quad \rightarrow \quad x<z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)<(y)] \quad \& \quad[(y) \leq(z)] \quad \& \quad[\neg(x)<(z)]]$

Special cases of the hypothesis and previous results:

Equality substitutions:

7: $\neg z=x \quad \vee \neg y \leq z \quad \vee \quad y \leq x$

Inferences:

8: $x \leq y \quad$ by
0: $x<y$
3: $\neg x<y \quad \vee \quad x \leq y$
9: $\neg y \leq x \quad$ by
0: $x<y$
6: $\neg x<y \quad \vee \quad \neg y \leq x$
10: $\neg x \leq y \quad \vee \quad x \leq z \quad$ by
1: $y \leq z$
4: $\neg x \leq y \quad \vee \quad \neg y \leq z \quad \vee \quad x \leq z$
11: $\neg z=x \vee y \leq x \quad$ by
1: $y \leq z$
7: $\neg z=x \quad \vee \quad \neg y \leq z \quad \vee \quad y \leq x$

12: $\neg x \leq z \quad \vee \quad z=x \quad$ by
2: $\neg x<z$
5: $x<z \quad \vee \quad \neg x \leq z \quad \vee \quad z=x$
13: $x \leq z \quad$ by
8: $x \leq y$
10: $\neg x \leq y \quad \vee \quad x \leq z$
14: $\neg z=x \quad$ by
9: $\neg y \leq x$
11: $\neg z=x \quad \vee \quad y \leq x$
15: $z=x \quad$ by
13: $x \leq z$
12: $\neg x \leq z \vee \quad z=x$
16: $Q E A$ by
14: $\neg z=x$
15: $z=x$

