Proof of Theorem 143

The theorem to be proved is

$$x \neq 0 \rightarrow x < x \cdot 2$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x) = (0)]$$
 & $[\neg (x) < (x \cdot 2)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 = x$$
 from H:x

1:
$$\neg x < x \cdot 2$$
 from H:x

2:
$$0 = x \quad \forall \quad x < 2 \cdot x$$
 from 137; x

3:
$$2 \cdot x = x \cdot 2$$
 from $105;x;2$

Equality substitutions:

4:
$$\neg 2 \cdot x = x \cdot 2 \quad \lor \quad \neg x < 2 \cdot x \quad \lor \quad x < x \cdot 2$$

Inferences:

5:
$$x < 2 \cdot x$$
 by

$$0: \neg 0 = x$$

$$2: \ \mathbf{0} = \mathbf{x} \quad \lor \quad x < 2 \cdot x$$

6:
$$\neg 2 \cdot x = x \cdot 2 \quad \lor \quad \neg x < 2 \cdot x$$
 by

1:
$$\neg x < x \cdot 2$$

4:
$$\neg 2 \cdot x = x \cdot 2 \quad \lor \quad \neg x < 2 \cdot x \quad \lor \quad x < x \cdot 2$$

7:
$$\neg x < 2 \cdot x$$
 by

$$3: 2 \cdot x = x \cdot 2$$

6:
$$\neg 2 \cdot x = x \cdot 2 \quad \lor \quad \neg x < 2 \cdot x$$

8:
$$QEA$$
 by

5:
$$x < 2 \cdot x$$

7:
$$\neg x < 2 \cdot x$$