Proof of Theorem 143

The theorem to be proved is
$x \neq 0 \quad \rightarrow \quad x<x \cdot 2$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(x)<(x \cdot 2)]]$

Special cases of the hypothesis and previous results:
$0: \quad \neg 0=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg x<x \cdot 2$ from $\mathrm{H}: x$
2: $\quad 0=x \quad \vee \quad x<2 \cdot x \quad$ from $\quad 137 ; x$
3: $\quad 2 \cdot x=x \cdot 2 \quad$ from $\quad 105 ; x ; 2$
Equality substitutions:

4: $\quad 2 \cdot x=x \cdot 2 \quad \vee \quad \neg x<2 \cdot x \quad \vee \quad x<x \cdot 2$

Inferences:

5: $\quad x<2 \cdot x \quad$ by
0 : $\neg 0=x$
2: $0=x \quad \vee \quad x<2 \cdot x$
6: $\quad \neg 2 \cdot x=x \cdot 2 \quad \vee \quad \neg x<2 \cdot x \quad$ by
1: $\neg x<x \cdot 2$
4: $\neg 2 \cdot x=x \cdot 2 \quad \vee \quad \neg x<2 \cdot x \quad \vee \quad x<x \cdot 2$
7: $\quad \neg x<2 \cdot x \quad$ by
3: $2 \cdot x=x \cdot 2$
6: $\neg 2 \cdot x=x \cdot 2 \quad \vee \quad \neg x<2 \cdot x$
8: $Q E A$ by
5: $x<2 \cdot x$
7: $\neg x<2 \cdot x$

