Proof of Theorem 142

The theorem to be proved is

$$x \le y \rightarrow z \cdot x \le z \cdot y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (y)]$$
 & $[\neg (z \cdot x) \le (z \cdot y)]$

Special cases of the hypothesis and previous results:

- 0: $x \le y$ from H:x:y:z
- 1: $\neg z \cdot x \leq z \cdot y$ from H:x:y:z
- 2: $\neg x \leq y \quad \lor \quad x \cdot z \leq y \cdot z$ from <u>107;</u>x;y;z
- 3: $z \cdot x = x \cdot z$ from 105;z;x
- 4: $z \cdot y = y \cdot z$ from $\underline{105}; z; y$

Equality substitutions:

5:
$$\neg z \cdot x = x \cdot z \quad \lor \quad z \cdot x \leq z \cdot y \quad \lor \quad \neg x \cdot z \leq z \cdot y$$

6:
$$\neg z \cdot y = y \cdot z \quad \lor \quad x \cdot z \leq z \cdot y \quad \lor \quad \neg x \cdot z \leq y \cdot z$$

Inferences:

- 7: $x \cdot z \le y \cdot z$ by
 - $0: x \leq y$
 - $2: \neg x \leq y \quad \lor \quad x \cdot z \leq y \cdot z$
- 8: $\neg z \cdot x = x \cdot z \quad \lor \quad \neg x \cdot z \leq z \cdot y$ by
 - 1: $\neg z \cdot x \leq z \cdot y$
 - 5: $\neg z \cdot x = x \cdot z \quad \lor \quad z \cdot x \leq z \cdot y \quad \lor \quad \neg x \cdot z \leq z \cdot y$
- 9: $\neg x \cdot z \leq z \cdot y$ by
 - 3: $z \cdot x = x \cdot z$
 - 8: $\neg z \cdot x = x \cdot z \quad \lor \quad \neg x \cdot z \leq z \cdot y$
- 10: $x \cdot z \leq z \cdot y \quad \lor \quad \neg x \cdot z \leq y \cdot z$ by
 - 4: $z \cdot y = y \cdot z$
 - 6: $\neg z \cdot y = y \cdot z \quad \lor \quad x \cdot z < z \cdot y \quad \lor \quad \neg x \cdot z < y \cdot z$

- 11: $x \cdot z \le z \cdot y$ by
 - $7: x \cdot z \le y \cdot z$
 - 10: $x \cdot z \leq z \cdot y \quad \lor \quad \neg \ x \cdot z \leq y \cdot z$
- 12: QEA by
 - 9: $\neg x \cdot z \leq z \cdot y$
 - 11: $x \cdot z \leq z \cdot y$