Proof of Theorem 140

The theorem to be proved is

$$x \neq 0 \quad \rightarrow \quad 2 \leq 2 \uparrow x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x) = (0)] \& [\neg (2) \le (2 \uparrow x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 = x$$
 from H: x

1:
$$\neg 2 \leq 2 \uparrow x$$
 from H:x

2:
$$S(S0) = 2$$
 from 116

3:
$$S0 = 1$$
 from 115

4:
$$x < 2 \uparrow x$$
 from $127;x$

5:
$$\neg x < 2 \uparrow x \lor Sx \le 2 \uparrow x$$
 from 114; x ; $2 \uparrow x$

6:
$$0 = x \lor 1 \le x$$
 from 139; x

7:
$$\neg 1 \le x \lor S1 \le Sx$$
 from 112;1; x

8:
$$\neg 2 \le Sx \lor \neg Sx \le 2 \uparrow x \lor 2 \le 2 \uparrow x$$
 from $73;2;Sx;2 \uparrow x$

Equality substitutions:

9:
$$\neg S0 = 1 \lor \neg S(S0) = 2 \lor S(1) = 2$$

10:
$$\neg S1 = 2 \lor \neg S1 \le Sx \lor 2 \le Sx$$

Inferences:

11:
$$1 \le x$$
 by

$$0: \neg 0 = x$$

6:
$$0 = x \lor 1 \le x$$

12:
$$\neg 2 \le Sx \lor \neg Sx \le 2 \uparrow x$$
 by

1:
$$\neg 2 \leq 2 \uparrow x$$

8:
$$\neg 2 \le Sx \lor \neg Sx \le 2 \uparrow x \lor 2 \le 2 \uparrow x$$

13:
$$\neg S0 = 1 \lor S1 = 2$$
 by

2:
$$S(S0) = 2$$

9:
$$\neg S0 = 1 \lor \neg S(S0) = 2 \lor S1 = 2$$

14:
$$S1 = 2$$
 by

$$3: S0 = 1$$

13:
$$\neg S0 = 1 \lor S1 = 2$$

15:
$$Sx \le 2 \uparrow x$$
 by

4:
$$x < 2 \uparrow x$$

5:
$$\neg x < 2 \uparrow x \quad \lor \quad Sx \le 2 \uparrow x$$

16:
$$S1 \leq Sx$$
 by

11:
$$1 \le x$$

7:
$$\neg 1 \leq x \lor S1 \leq Sx$$

17:
$$\neg S1 \leq Sx \lor 2 \leq Sx$$
 by

14:
$$S1 = 2$$

10:
$$\neg S1 = 2 \lor \neg S1 \le Sx \lor 2 \le Sx$$

18:
$$\neg 2 \leq Sx$$
 by

15:
$$Sx \leq 2 \uparrow x$$

12:
$$\neg 2 \le Sx \lor \neg Sx \le 2 \uparrow x$$

19:
$$2 \leq Sx$$
 by

16:
$$S1 \le Sx$$

17:
$$\neg S1 \leq Sx \lor 2 \leq Sx$$

20:
$$QEA$$
 by

18:
$$\neg 2 \leq Sx$$

19:
$$2 \le Sx$$