Proof of Theorem 140

The theorem to be proved is
$x \neq 0 \quad \rightarrow \quad 2 \leq 2 \uparrow x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(2) \leq(2 \uparrow x)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{lllll}
0: & \neg 0=x \quad \text { from } \quad \mathrm{H}: x \\
1: & \neg 2 \leq 2 \uparrow x \quad \text { from } \quad \mathrm{H}: x \\
2: & \mathrm{S}(\mathrm{~S} 0)=2 \quad \text { from } \quad \underline{116} \\
3: & \mathrm{S} 0=1 \quad \text { from } \quad \underline{115} \\
4: & x<2 \uparrow x \quad \text { from } \quad \underline{127 ; x} \\
5: & \neg x<2 \uparrow x & \vee & \mathrm{~S} x \leq 2 \uparrow x \quad \text { from } & \underline{114} ; x ; 2 \uparrow x \\
6: & 0=x \quad \vee & 1 \leq x \quad \text { from } \quad \underline{139 ; x} & & \\
7: & \neg 1 \leq x \quad \vee & \mathrm{~S} 1 \leq \mathrm{S} x \quad \text { from } & \underline{112 ; 1 ; x} \\
8: & \neg 2 \leq \mathrm{S} x & \vee & \neg \mathrm{~S} x \leq 2 \uparrow x & \vee \\
2 \leq 2 \uparrow x & \text { from } & \underline{73} ; 2 ; \mathrm{S} x ; 2 \uparrow x
\end{array}
$$

Equality substitutions:

9: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S}(1)=2$
10: $\neg \mathrm{S} 1=2 \vee \neg \mathrm{~S} 1 \leq \mathrm{S} x \quad \vee \quad 2 \leq \mathrm{S} x$

Inferences:

11: $1 \leq x \quad$ by
0: $\neg 0=x$
6: $0=x \quad \vee \quad 1 \leq x$
12: $\neg 2 \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x \leq 2 \uparrow x \quad$ by
1: $\neg 2 \leq 2 \uparrow x$
8: $\neg 2 \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x \leq 2 \uparrow x \quad \vee \quad 2 \leq 2 \uparrow x$

13: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2 \quad$ by
2: $\mathrm{S}(\mathrm{SO})=2$
9: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S} 1=2$
14: $\quad \mathrm{S} 1=2 \quad$ by
3: $\mathrm{S} 0=1$
13: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2$
15: $\quad \mathrm{S} x \leq 2 \uparrow x \quad$ by
4: $x<2 \uparrow x$
5: $\neg x<2 \uparrow x \quad \vee \quad \mathrm{~S} x \leq 2 \uparrow x$
16: $\quad \mathrm{S} 1 \leq \mathrm{S} x \quad$ by
11: $1 \leq x$
7: $\neg 1 \leq x \quad \vee \quad \mathrm{~S} 1 \leq \mathrm{S} x$
17: $\neg \mathrm{S} 1 \leq \mathrm{S} x \vee 2 \leq \mathrm{S} x \quad$ by
14: $\mathrm{S} 1=2$
10: $\neg \mathrm{S} 1=2 \quad \vee \quad \neg \mathrm{~S} 1 \leq \mathrm{S} x \quad \vee \quad 2 \leq \mathrm{S} x$
18: $\neg 2 \leq \mathrm{S} x \quad$ by
15: $\mathrm{S} x \leq 2 \uparrow x$
12: $\neg 2 \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x \leq 2 \uparrow x$
19: $2 \leq \mathrm{S} x \quad$ by
16: $\mathrm{S} 1 \leq \mathrm{S} x$
17: $\neg \mathrm{S} 1 \leq \mathrm{S} x \quad \vee \quad 2 \leq \mathrm{S} x$
20: $Q E A \quad$ by
18: $\neg 2 \leq \mathrm{S} x$
19: $2 \leq \mathrm{S} x$

