Proof of Theorem 13i

The theorem to be proved is

$$x + 0 = 0 + x \quad \rightarrow \quad Sx + 0 = 0 + Sx$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x+0) = (0+x)] \& [\neg ((Sx) + 0) = (0 + (Sx))]]$$

Special cases of the hypothesis and previous results:

0:
$$0 + x = x + 0$$
 from H:x

1:
$$\neg (Sx) + 0 = 0 + (Sx)$$
 from H:x

2:
$$(Sx) + 0 = Sx$$
 from 12; Sx

3:
$$S(0+x) = 0 + (Sx)$$
 from 12;0;x

4:
$$x + 0 = x$$
 from 12; x

Equality substitutions:

5:
$$\neg 0 + x = x + 0 \lor \neg S(0 + x) = 0 + (Sx) \lor S(x + 0) = 0 + (Sx)$$

6:
$$\neg (Sx) + 0 = Sx \lor (Sx) + 0 = 0 + (Sx) \lor \neg Sx = 0 + (Sx)$$

7:
$$\neg x + 0 = x \lor \neg S(x + 0) = 0 + (Sx) \lor S(x) = 0 + (Sx)$$

Inferences:

8:
$$\neg S(0+x) = 0 + (Sx) \lor S(x+0) = 0 + (Sx)$$
 by

0:
$$0 + x = x + 0$$

5:
$$\neg 0 + x = x + 0 \lor \neg S(0 + x) = 0 + (Sx) \lor S(x + 0) = 0 + (Sx)$$

9:
$$\neg (Sx) + 0 = Sx \lor \neg 0 + (Sx) = Sx$$
 by

1:
$$\neg (Sx) + 0 = 0 + (Sx)$$

6:
$$\neg (Sx) + 0 = Sx \lor (Sx) + 0 = 0 + (Sx) \lor \neg 0 + (Sx) = Sx$$

10:
$$\neg 0 + (Sx) = Sx$$
 by

2:
$$(Sx) + 0 = Sx$$

9:
$$\neg (Sx) + 0 = Sx \lor \neg 0 + (Sx) = Sx$$

11:
$$S(x+0) = 0 + (Sx)$$
 by

3:
$$S(0+x) = 0 + (Sx)$$

8:
$$\neg S(0+x) = 0 + (Sx) \lor S(x+0) = 0 + (Sx)$$

12:
$$\neg S(x+0) = 0 + (Sx) \lor 0 + (Sx) = Sx$$
 by

4:
$$x + 0 = x$$

7:
$$\neg x + 0 = x \lor \neg S(x + 0) = 0 + (Sx) \lor 0 + (Sx) = Sx$$

13:
$$\neg S(x+0) = 0 + (Sx)$$
 by

10:
$$\neg 0 + (Sx) = Sx$$

12:
$$\neg S(x+0) = 0 + (Sx) \lor 0 + (Sx) = Sx$$

14:
$$QEA$$
 by

11:
$$S(x+0) = 0 + (Sx)$$

13:
$$\neg S(x+0) = 0 + (Sx)$$