Proof of Theorem 13i

The theorem to be proved is
$x+0=0+x \quad \rightarrow \quad \mathrm{~S} x+0=0+\mathrm{S} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x+0)=(0+x)] \quad \& \quad[\neg((\mathrm{~S} x)+0)=(0+(\mathrm{S} x))]]$

Special cases of the hypothesis and previous results:

$0: \quad 0+x=x+0 \quad$ from $\mathrm{H}: x$
1: $\neg(\mathrm{S} x)+0=0+(\mathrm{S} x)$ from $\mathrm{H}: x$
2: $\quad(\mathrm{S} x)+0=\mathrm{S} x \quad$ from $\quad 12 ; \mathrm{S} x$
3: $\quad \mathrm{S}(0+x)=0+(\mathrm{S} x) \quad$ from $\quad \underline{12 ; 0 ;} ;$
4: $x+0=x \quad$ from $\quad \underline{12} ; x$

Equality substitutions:

5: $\quad \neg 0+x=x+0 \quad \vee \quad \neg \mathrm{~S}(0+x)=0+(\mathrm{S} x) \quad \vee \quad \mathrm{S}(x+0)=0+(\mathrm{S} x)$
6: $\neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee(\mathrm{~S} x)+0=0+(\mathrm{S} x) \quad \vee \quad \neg \mathrm{S} x=0+(\mathrm{S} x)$
7: $\neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=0+(\mathrm{S} x) \quad \vee \quad \mathrm{S}(x)=0+(\mathrm{S} x)$

Inferences:

8: $\quad \neg \mathrm{S}(0+x)=0+(\mathrm{S} x) \quad \vee \quad \mathrm{S}(x+0)=0+(\mathrm{S} x) \quad$ by
0: $0+x=x+0$
5: $\neg 0+x=x+0 \quad \vee \neg \mathrm{~S}(0+x)=0+(\mathrm{S} x) \quad \vee \mathrm{S}(x+0)=0+(\mathrm{S} x)$
9: $\quad \neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee \quad \neg 0+(\mathrm{S} x)=\mathrm{S} x \quad$ by
1: $\neg(\mathrm{S} x)+0=0+(\mathrm{S} x)$
6: $\neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee \quad(\mathrm{~S} x)+0=0+(\mathrm{S} x) \quad \vee \quad \neg 0+(\mathrm{S} x)=\mathrm{S} x$
10: $\quad \neg 0+(\mathrm{S} x)=\mathrm{S} x \quad$ by
2: $(\mathrm{S} x)+0=\mathrm{S} x$
9: $\neg(\mathrm{S} x)+0=\mathrm{S} x \quad \vee \quad \neg 0+(\mathrm{S} x)=\mathrm{S} x$

11: $\mathrm{S}(x+0)=0+(\mathrm{S} x) \quad$ by
3: $\mathrm{S}(0+x)=0+(\mathrm{S} x)$
8: $\neg \mathrm{S}(0+x)=0+(\mathrm{S} x) \vee \mathrm{S}(x+0)=0+(\mathrm{S} x)$
12: $\neg \mathrm{S}(x+0)=0+(\mathrm{S} x) \quad \vee \quad 0+(\mathrm{S} x)=\mathrm{S} x \quad$ by
4: $x+0=x$
$7: \neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=0+(\mathrm{S} x) \quad \vee \quad 0+(\mathrm{S} x)=\mathrm{S} x$
13: $\neg \mathrm{S}(x+0)=0+(\mathrm{S} x) \quad$ by
10: $\neg 0+(\mathrm{S} x)=\mathrm{S} x$
12: $\neg \mathrm{S}(x+0)=0+(\mathrm{S} x) \vee 0+(\mathrm{S} x)=\mathrm{S} x$
14: $Q E A$ by
11: $\mathrm{S}(x+0)=0+(\mathrm{S} x)$
13: $\neg \mathrm{S}(x+0)=0+(\mathrm{S} x)$

