Proof of Theorem 139

The theorem to be proved is
$x \neq 0 \quad \rightarrow \quad 1 \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(1) \leq(x)]]$

Special cases of the hypothesis and previous results:

$0: \quad \neg 0=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg 1 \leq x \quad$ from $\quad \mathrm{H}: x$
2: $\mathrm{S} 0=1 \quad$ from $\quad \underline{115}$
3: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ;} x$
4: $0 \leq \mathrm{P} x \quad$ from $\quad \underline{138} ; \mathrm{P} x$
5: $\neg 0 \leq \mathrm{P} x \quad \vee \quad \mathrm{~S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad$ from $\quad 112 ; 0 ; \mathrm{P} x$

Equality substitutions:

6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad \vee \quad \mathrm{S} 0 \leq x$

7: $\neg 1=\mathrm{S} 0 \quad \vee(1) \leq x \quad \vee \quad \neg(\mathrm{~S} 0) \leq x$

Inferences:

8: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
0 : $\neg 0=x$
$3: 0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
9: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S} 0 \leq x \quad$ by
1: $\neg 1 \leq x$
$7: \neg \mathrm{S} 0=1 \quad \vee \quad 1 \leq x \quad \vee \quad \neg \mathrm{~S} 0 \leq x$
10: $\neg \mathrm{S} 0 \leq x \quad$ by
2: $\mathrm{S} 0=1$
9: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S} 0 \leq x$

11: $\quad \mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad$ by
4: $0 \leq \mathrm{P} x$
5: $\neg 0 \leq \mathrm{P} x \quad \vee \quad \mathrm{~S} 0 \leq \mathrm{S}(\mathrm{P} x)$
12: $\neg \mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x) \vee \mathrm{S} 0 \leq x \quad$ by
8: $\mathrm{S}(\mathrm{P} x)=x$
6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad \vee \quad \mathrm{S} 0 \leq x$
13: $\quad \neg \mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad$ by
10: $\neg \mathrm{S} 0 \leq x$
12: $\neg \mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x) \quad \vee \quad \mathrm{S} 0 \leq x$
14: $Q E A$ by
11: $\mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x)$
13: $\neg \mathrm{S} 0 \leq \mathrm{S}(\mathrm{P} x)$

