Proof of Theorem 138

The theorem to be proved is
$0 \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(0) \leq(x)]]$

Special cases of the hypothesis and previous results:

0: $\neg 0 \leq x \quad$ from $\quad \mathrm{H}: x$
1: $0+x=x \quad$ from $\quad \underline{97} ; x$
2: $0 \leq 0+x \quad$ from $\quad 71 ; 0 ; x$

Equality substitutions:

3: $\neg 0+x=x \quad \vee \quad \neg 0 \leq 0+x \quad \vee \quad 0 \leq x$

Inferences:

$$
\begin{array}{llll}
\text { 4: } & \neg 0+x=x \quad \vee \quad \neg 0 \leq 0+x \quad \text { by } \\
& 0: \neg 0 \leq x & \\
& 3: \neg 0+x=x \quad \vee \quad \neg 0 \leq 0+x \quad \vee \quad 0 \leq x \\
5: & \neg 0 \leq 0+x \quad \text { by } \\
& 1: 0+x=x \\
& 4: \neg 0+x=x \quad \vee \quad \neg 0 \leq 0+x
\end{array}
$$

6: $Q E A$ by
2: $0 \leq 0+x$
$5: \neg 0 \leq 0+x$

