Proof of Theorem 138

The theorem to be proved is

 $0 \le x$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (0) \le (x)]]$

Special cases of the hypothesis and previous results:

- $0: \neg 0 \le x$ from H:x
- 1: 0 + x = x from 97; x
- 2: $0 \le 0 + x$ from 71;0;x

Equality substitutions:

3:
$$\neg 0 + x = x \lor \neg 0 \le 0 + x \lor 0 \le x$$

Inferences:

- 4: $\neg 0 + x = x \lor \neg 0 \le 0 + x$ by
 - $0: \neg 0 < x$
 - 3: $\neg 0 + x = x \quad \lor \quad \neg 0 \le 0 + x \quad \lor \quad \frac{0 \le x}{}$
- 5: $\neg 0 \le 0 + x$ by
 - 1: 0 + x = x
 - 4: $\neg 0 + x = x \lor \neg 0 < 0 + x$
- 6: QEA by
 - 2: $0 \le 0 + x$
 - $5: \neg 0 \le 0 + x$