Proof of Theorem 137

The theorem to be proved is
$x \neq 0 \quad \rightarrow \quad x<2 \cdot x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(x)<(2 \cdot x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg 0=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg x<2 \cdot x \quad$ from $\quad \mathrm{H}: x$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ; ~} x$
3: $\mathrm{P} x<\mathrm{S}(\mathrm{P} x)$ from $125 ; \mathrm{P} x$
4: $\neg \mathrm{P} x<x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)<2 \cdot x \quad$ from $\quad \underline{124} ; \mathrm{P} x ; x$

Equality substitutions:

5: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{P} x<\mathrm{S}(\mathrm{P} x) \quad \vee \quad \mathrm{P} x<x$
6: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)<2 \cdot x \quad \vee \quad x<2 \cdot x$

Inferences:

7: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
0: $\neg 0=x$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
8: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)<2 \cdot x \quad$ by
1: $\neg x<2 \cdot x$
6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)<2 \cdot x \quad \vee \quad x<2 \cdot x$
9: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{P} x<x \quad$ by
3: $\mathrm{P} x<\mathrm{S}(\mathrm{P} x)$
5: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{P} x<\mathrm{S}(\mathrm{P} x) \quad \vee \quad \mathrm{P} x<x$
10: $\neg \mathrm{S}(\mathrm{P} x)<2 \cdot x \quad$ by
7: $\mathrm{S}(\mathrm{P} x)=x$
8: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)<2 \cdot x$

11: $\mathrm{P} x<x \quad$ by
7: $\mathrm{S}(\mathrm{P} x)=x$
9: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{P} x<x$
12: $\neg \mathrm{P} x<x \quad$ by
10: $\neg \mathrm{S}(\mathrm{P} x)<2 \cdot x$
4: $\neg \mathrm{P} x<x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)<2 \cdot x$
13: $Q E A$ by
11: $\mathrm{P} x<x$
12: $\neg \mathrm{P} x<x$

