Proof of Theorem 137

The theorem to be proved is

$$x \neq 0 \quad \rightarrow \quad x < 2 \cdot x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x) = (0)] \& [\neg (x) < (2 \cdot x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 = x$$
 from H: x

1:
$$\neg x < 2 \cdot x$$
 from H:x

2:
$$0 = x \lor S(Px) = x$$
 from $22;x$

3:
$$Px < S(Px)$$
 from 125; Px

4:
$$\neg Px < x \lor S(Px) < 2 \cdot x$$
 from 124; $Px;x$

Equality substitutions:

5:
$$\neg S(Px) = x \lor \neg Px < S(Px) \lor Px < x$$

6:
$$\neg S(Px) = x \lor \neg S(Px) < 2 \cdot x \lor x < 2 \cdot x$$

Inferences:

7:
$$S(Px) = x$$
 by

$$0: \neg 0 = x$$

2:
$$0 = x \quad \lor \quad S(Px) = x$$

8:
$$\neg S(Px) = x \lor \neg S(Px) < 2 \cdot x$$
 by

1:
$$\neg x < 2 \cdot x$$

6:
$$\neg S(Px) = x \lor \neg S(Px) < 2 \cdot x \lor x < 2 \cdot x$$

9:
$$\neg S(Px) = x \lor Px < x$$
 by

3:
$$Px < S(Px)$$

5:
$$\neg S(Px) = x \lor \neg Px < S(Px) \lor Px < x$$

10:
$$\neg S(Px) < 2 \cdot x$$
 by

7:
$$S(Px) = x$$

8:
$$\neg S(Px) = x \lor \neg S(Px) < 2 \cdot x$$

11:
$$Px < x$$
 by

7:
$$S(Px) = x$$

9:
$$\neg S(Px) = x \lor Px < x$$

12:
$$\neg Px < x$$
 by

10:
$$\neg S(Px) < 2 \cdot x$$

4:
$$\neg Px < x \lor S(Px) < 2 \cdot x$$

13:
$$QEA$$
 by

11:
$$Px < x$$

12:
$$\neg Px < x$$