Proof of Theorem 135

The theorem to be proved is
q is a power of two $\rightarrow 2 \cdot q$ is a power of two
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(q)$ is a power of two $] \quad \& \quad[\neg(2 \cdot q)$ is a power of two $]]$

Special cases of the hypothesis and previous results:

0: q is a power of two from $\mathrm{H}: q$
1: $\neg 2 \cdot q$ is a power of two from $\mathrm{H}: q$
2: $\neg q$ is a power of two $\vee 2 \uparrow x=q \quad$ from $\quad \underline{129}{ }^{\rightarrow} ; q: x$
3: $2 \cdot q$ is a power of two $\vee \neg \mathrm{S} x \leq 2 \cdot q \quad \vee \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ from $\quad 129^{\leftarrow} ; 2 \cdot q ; \mathrm{S} x$
4: $2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad$ from $\quad \underline{126} ; 2 ; x$
5: $\quad \mathrm{S} x \leq 2 \uparrow(\mathrm{~S} x) \quad$ from $\quad 128 ; \mathrm{S} x$

Equality substitutions:

6: $\neg 2 \uparrow x=q \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \vee 2 \cdot(q)=2 \uparrow(\mathrm{~S} x)$

7: $\quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad \neg \mathrm{~S} x \leq 2 \uparrow(\mathrm{~S} x) \quad \vee \quad \mathrm{S} x \leq 2 \cdot q$

Inferences:

8: $\quad 2 \uparrow x=q \quad$ by
0: q is a power of two
$2: \neg q$ is a power of two $\vee 2 \uparrow x=q$
9: $\neg \mathrm{S} x \leq 2 \cdot q \quad \vee \quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ by
1: $\neg 2 \cdot q$ is a power of two
3: $2 \cdot q$ is a power of two $\vee \neg \mathrm{S} x \leq 2 \cdot q \quad \vee \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q$
10: $\quad \neg 2 \uparrow x=q \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ by
4: $2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x)$
$6: \neg 2 \uparrow x=q \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q$

11: $\quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad \mathrm{~S} x \leq 2 \cdot q \quad$ by
5: $\mathrm{S} x \leq 2 \uparrow(\mathrm{~S} x)$
$7: \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad \neg \mathrm{~S} x \leq 2 \uparrow(\mathrm{~S} x) \quad \vee \quad \mathrm{S} x \leq 2 \cdot q$
12: $\quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad$ by
8: $2 \uparrow x=q$
10: $\neg 2 \uparrow x=q \quad \vee \quad 2 \uparrow(\mathrm{~S} x)=2 \cdot q$
13: $\neg \mathrm{S} x \leq 2 \cdot q \quad$ by
12: $2 \uparrow(\mathrm{~S} x)=2 \cdot q$
9: $\neg \mathrm{S} x \leq 2 \cdot q \vee \quad \neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q$
14: $\quad \mathrm{S} x \leq 2 \cdot q \quad$ by
12: $2 \uparrow(\mathrm{~S} x)=2 \cdot q$
11: $\neg 2 \uparrow(\mathrm{~S} x)=2 \cdot q \quad \vee \quad \mathrm{~S} x \leq 2 \cdot q$
15: $Q E A$ by
13: $\neg \mathrm{S} x \leq 2 \cdot q$
14: $\mathrm{S} x \leq 2 \cdot q$

