Proof of Theorem 134

The theorem to be proved is

 $\neg 0$ is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) [[(0) is a power of two]]

Special cases of the hypothesis and previous results:

- 0: 0 is a power of two from H
- 1: $\neg 0$ is a power of two $\lor 2 \uparrow x = 0$ from $129 \Rightarrow 0$;0:x
- 2: $\neg 2 \uparrow x = 0$ from <u>133;</u>x

Inferences:

- 3: $2 \uparrow x = 0$ by
 - 0: 0 is a power of two
 - 1: $\neg 0$ is a power of two $\lor 2 \uparrow x = 0$
- 4: QEA by
 - $2: \neg 2 \uparrow x = 0$
 - $3: \ 2 \uparrow x = 0$