Proof of Theorem 134

The theorem to be proved is
$\neg 0$ is a power of two
Suppose the theorem does not hold. Then, with the variables held fixed, (H) [[(0) is a power of two $]$]

Special cases of the hypothesis and previous results:

0 : 0 is a power of two from H
1: $\neg 0$ is a power of two $\vee 2 \uparrow x=0 \quad$ from $\quad \underline{129} \rightarrow ; 0: x$
2: $\quad \neg 2 \uparrow x=0 \quad$ from $\quad 133 ; x$

Inferences:

3: $2 \uparrow x=0 \quad$ by
0: 0 is a power of two
1: $\neg 0$ is a power of two $\vee 2 \uparrow x=0$
4: $Q E A$ by
2: $\neg 2 \uparrow x=0$
3: $2 \uparrow x=0$

